import json import os.path as osp from collections import defaultdict import cv2 import numpy as np class Octopus(object): """ dataset structure: - data_root - train_split.txt - val_split.txt - test_split.txt - """ camera_names = ['cam01', 'cam03', 'cam05', 'cam06', 'cam07', 'cam08', 'cam09'] camera_tags = ['top', 'top2', 'left_back', 'left_front', 'right_front', 'right_back', 'back'] def __init__(self, dataset_root): self.dataset_root = dataset_root self.data_root = osp.join(self.dataset_root, 'data') self._collect_basic_infos() @property def train_split_list(self): if not osp.isfile(osp.join(self.dataset_root, 'ImageSets', 'train_set.txt')): train_split_list = None else: train_split_list = set(map(lambda x: x.strip(), open(osp.join(self.data_root, 'train_set.txt')).readlines())) return train_split_list @property def val_split_list(self): if not osp.isfile(osp.join(self.dataset_root, 'ImageSets', 'val_set.txt')): val_split_list = None else: val_split_list = set(map(lambda x: x.strip(), open(osp.join(self.data_root, 'val_set.txt')).readlines())) return val_split_list @property def test_split_list(self): if not osp.isfile(osp.join(self.dataset_root, 'ImageSets', 'test_set.txt')): test_split_list = None else: test_split_list = set(map(lambda x: x.strip(), open(osp.join(self.data_root, 'test_set.txt')).readlines())) return test_split_list @property def raw_split_list(self): if not osp.isfile(osp.join(self.dataset_root, 'ImageSets', 'raw_set.txt')): raw_split_list = None else: raw_split_list = set(map(lambda x: x.strip(), open(osp.join(self.data_root, 'raw_set.txt')).readlines())) return raw_split_list def _find_split_name(self, seq_id): if seq_id in self.raw_split_list: return 'raw' if seq_id in self.train_split_list: return 'train' if seq_id in self.test_split_list: return 'test' if seq_id in self.val_split_list: return 'val' print("sequence id {} corresponding to no split".format(seq_id)) raise NotImplementedError def _collect_basic_infos(self): self.train_info = defaultdict(dict) if self.train_split_list is not None: for train_seq in self.train_split_list: anno_file_path = osp.join(self.data_root, train_seq, '{}.json'.format(train_seq)) if not osp.isfile(anno_file_path): print("no annotation file for sequence {}".format(train_seq)) raise FileNotFoundError anno_file = json.load(open(anno_file_path, 'r')) for frame_anno in anno_file['frames']: self.train_info[train_seq][frame_anno['frame_id']] = { 'pose': frame_anno['pose'], 'calib': anno_file['calib'], } def get_frame_anno(self, seq_id, frame_id): split_name = self._find_split_name(seq_id) frame_info = getattr(self, '{}_info'.format(split_name))[seq_id][frame_id] if 'anno' in frame_info: return frame_info['anno'] return None def load_point_cloud(self, seq_id, frame_id): bin_path = osp.join(self.data_root, seq_id, 'lidar_roof', '{}.bin'.format(frame_id)) points = np.fromfile(bin_path, dtype=np.float32).reshape(-1, 4) return points def load_image(self, seq_id, frame_id, cam_name): cam_path = osp.join(self.data_root, seq_id, cam_name, '{}.jpg'.format(frame_id)) img_buf = cv2.cvtColor(cv2.imread(cam_path), cv2.COLOR_BGR2RGB) return img_buf def project_lidar_to_image(self, seq_id, frame_id): points = self.load_point_cloud(seq_id, frame_id) split_name = self._find_split_name(seq_id) frame_info = getattr(self, '{}_info'.format(split_name))[seq_id][frame_id] points_img_dict = dict() for cam_name in self.__class__.camera_names: calib_info = frame_info['calib'][cam_name] cam_2_velo = calib_info['cam_to_velo'] cam_intri = calib_info['cam_intrinsic'] point_xyz = points[:, :3] points_homo = np.hstack( [point_xyz, np.ones(point_xyz.shape[0], dtype=np.float32).reshape((-1, 1))]) points_lidar = np.dot(points_homo, np.linalg.inv(cam_2_velo).T) mask = points_lidar[:, 2] > 0 points_lidar = points_lidar[mask] points_img = np.dot(points_lidar, cam_intri.T) points_img_dict[cam_name] = points_img return points_img_dict def undistort_image(self, seq_id, frame_id): pass