from .detector3d_template import Detector3DTemplate from .. import backbones_image, view_transforms from ..backbones_image import img_neck from ..backbones_2d import fuser class BevFusion(Detector3DTemplate): def __init__(self, model_cfg, num_class, dataset): super().__init__(model_cfg=model_cfg, num_class=num_class, dataset=dataset) self.module_topology = [ 'vfe', 'backbone_3d', 'map_to_bev_module', 'pfe', 'image_backbone','neck','vtransform','fuser', 'backbone_2d', 'dense_head', 'point_head', 'roi_head' ] self.module_list = self.build_networks() def build_neck(self,model_info_dict): if self.model_cfg.get('NECK', None) is None: return None, model_info_dict neck_module = img_neck.__all__[self.model_cfg.NECK.NAME]( model_cfg=self.model_cfg.NECK ) model_info_dict['module_list'].append(neck_module) return neck_module, model_info_dict def build_vtransform(self,model_info_dict): if self.model_cfg.get('VTRANSFORM', None) is None: return None, model_info_dict vtransform_module = view_transforms.__all__[self.model_cfg.VTRANSFORM.NAME]( model_cfg=self.model_cfg.VTRANSFORM ) model_info_dict['module_list'].append(vtransform_module) return vtransform_module, model_info_dict def build_image_backbone(self, model_info_dict): if self.model_cfg.get('IMAGE_BACKBONE', None) is None: return None, model_info_dict image_backbone_module = backbones_image.__all__[self.model_cfg.IMAGE_BACKBONE.NAME]( model_cfg=self.model_cfg.IMAGE_BACKBONE ) image_backbone_module.init_weights() model_info_dict['module_list'].append(image_backbone_module) return image_backbone_module, model_info_dict def build_fuser(self, model_info_dict): if self.model_cfg.get('FUSER', None) is None: return None, model_info_dict fuser_module = fuser.__all__[self.model_cfg.FUSER.NAME]( model_cfg=self.model_cfg.FUSER ) model_info_dict['module_list'].append(fuser_module) model_info_dict['num_bev_features'] = self.model_cfg.FUSER.OUT_CHANNEL return fuser_module, model_info_dict def forward(self, batch_dict): for i,cur_module in enumerate(self.module_list): batch_dict = cur_module(batch_dict) if self.training: loss, tb_dict, disp_dict = self.get_training_loss(batch_dict) ret_dict = { 'loss': loss } return ret_dict, tb_dict, disp_dict else: pred_dicts, recall_dicts = self.post_processing(batch_dict) return pred_dicts, recall_dicts def get_training_loss(self,batch_dict): disp_dict = {} loss_trans, tb_dict = batch_dict['loss'],batch_dict['tb_dict'] tb_dict = { 'loss_trans': loss_trans.item(), **tb_dict } loss = loss_trans return loss, tb_dict, disp_dict def post_processing(self, batch_dict): post_process_cfg = self.model_cfg.POST_PROCESSING batch_size = batch_dict['batch_size'] final_pred_dict = batch_dict['final_box_dicts'] recall_dict = {} for index in range(batch_size): pred_boxes = final_pred_dict[index]['pred_boxes'] recall_dict = self.generate_recall_record( box_preds=pred_boxes, recall_dict=recall_dict, batch_index=index, data_dict=batch_dict, thresh_list=post_process_cfg.RECALL_THRESH_LIST ) return final_pred_dict, recall_dict