import torch from ...utils import box_coder_utils, box_utils from .point_head_template import PointHeadTemplate class PointIntraPartOffsetHead(PointHeadTemplate): """ Point-based head for predicting the intra-object part locations. Reference Paper: https://arxiv.org/abs/1907.03670 From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network """ def __init__(self, num_class, input_channels, model_cfg, predict_boxes_when_training=False, **kwargs): super().__init__(model_cfg=model_cfg, num_class=num_class) self.predict_boxes_when_training = predict_boxes_when_training self.cls_layers = self.make_fc_layers( fc_cfg=self.model_cfg.CLS_FC, input_channels=input_channels, output_channels=num_class ) self.part_reg_layers = self.make_fc_layers( fc_cfg=self.model_cfg.PART_FC, input_channels=input_channels, output_channels=3 ) target_cfg = self.model_cfg.TARGET_CONFIG if target_cfg.get('BOX_CODER', None) is not None: self.box_coder = getattr(box_coder_utils, target_cfg.BOX_CODER)( **target_cfg.BOX_CODER_CONFIG ) self.box_layers = self.make_fc_layers( fc_cfg=self.model_cfg.REG_FC, input_channels=input_channels, output_channels=self.box_coder.code_size ) else: self.box_layers = None def assign_targets(self, input_dict): """ Args: input_dict: point_features: (N1 + N2 + N3 + ..., C) batch_size: point_coords: (N1 + N2 + N3 + ..., 4) [bs_idx, x, y, z] gt_boxes (optional): (B, M, 8) Returns: point_cls_labels: (N1 + N2 + N3 + ...), long type, 0:background, -1:ignored point_part_labels: (N1 + N2 + N3 + ..., 3) """ point_coords = input_dict['point_coords'] gt_boxes = input_dict['gt_boxes'] assert gt_boxes.shape.__len__() == 3, 'gt_boxes.shape=%s' % str(gt_boxes.shape) assert point_coords.shape.__len__() in [2], 'points.shape=%s' % str(point_coords.shape) batch_size = gt_boxes.shape[0] extend_gt_boxes = box_utils.enlarge_box3d( gt_boxes.view(-1, gt_boxes.shape[-1]), extra_width=self.model_cfg.TARGET_CONFIG.GT_EXTRA_WIDTH ).view(batch_size, -1, gt_boxes.shape[-1]) targets_dict = self.assign_stack_targets( points=point_coords, gt_boxes=gt_boxes, extend_gt_boxes=extend_gt_boxes, set_ignore_flag=True, use_ball_constraint=False, ret_part_labels=True, ret_box_labels=(self.box_layers is not None) ) return targets_dict def get_loss(self, tb_dict=None): tb_dict = {} if tb_dict is None else tb_dict point_loss_cls, tb_dict = self.get_cls_layer_loss(tb_dict) point_loss_part, tb_dict = self.get_part_layer_loss(tb_dict) point_loss = point_loss_cls + point_loss_part if self.box_layers is not None: point_loss_box, tb_dict = self.get_box_layer_loss(tb_dict) point_loss += point_loss_box return point_loss, tb_dict def forward(self, batch_dict): """ Args: batch_dict: batch_size: point_features: (N1 + N2 + N3 + ..., C) or (B, N, C) point_coords: (N1 + N2 + N3 + ..., 4) [bs_idx, x, y, z] point_labels (optional): (N1 + N2 + N3 + ...) gt_boxes (optional): (B, M, 8) Returns: batch_dict: point_cls_scores: (N1 + N2 + N3 + ..., 1) point_part_offset: (N1 + N2 + N3 + ..., 3) """ point_features = batch_dict['point_features'] point_cls_preds = self.cls_layers(point_features) # (total_points, num_class) point_part_preds = self.part_reg_layers(point_features) ret_dict = { 'point_cls_preds': point_cls_preds, 'point_part_preds': point_part_preds, } if self.box_layers is not None: point_box_preds = self.box_layers(point_features) ret_dict['point_box_preds'] = point_box_preds point_cls_scores = torch.sigmoid(point_cls_preds) point_part_offset = torch.sigmoid(point_part_preds) batch_dict['point_cls_scores'], _ = point_cls_scores.max(dim=-1) batch_dict['point_part_offset'] = point_part_offset if self.training: targets_dict = self.assign_targets(batch_dict) ret_dict['point_cls_labels'] = targets_dict['point_cls_labels'] ret_dict['point_part_labels'] = targets_dict.get('point_part_labels') ret_dict['point_box_labels'] = targets_dict.get('point_box_labels') if self.box_layers is not None and (not self.training or self.predict_boxes_when_training): point_cls_preds, point_box_preds = self.generate_predicted_boxes( points=batch_dict['point_coords'][:, 1:4], point_cls_preds=point_cls_preds, point_box_preds=ret_dict['point_box_preds'] ) batch_dict['batch_cls_preds'] = point_cls_preds batch_dict['batch_box_preds'] = point_box_preds batch_dict['batch_index'] = batch_dict['point_coords'][:, 0] batch_dict['cls_preds_normalized'] = False self.forward_ret_dict = ret_dict return batch_dict