import torch import torch.nn as nn import numpy as np from pcdet.ops.ingroup_inds.ingroup_inds_op import ingroup_inds get_inner_win_inds_cuda = ingroup_inds class PositionEmbeddingLearned(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, input_channel, num_pos_feats): super().__init__() self.position_embedding_head = nn.Sequential( nn.Linear(input_channel, num_pos_feats), nn.BatchNorm1d(num_pos_feats), nn.ReLU(inplace=True), nn.Linear(num_pos_feats, num_pos_feats)) def forward(self, xyz): position_embedding = self.position_embedding_head(xyz) return position_embedding @torch.no_grad() def get_window_coors(coors, sparse_shape, window_shape, do_shift, shift_list=None, return_win_coors=False): if len(window_shape) == 2: win_shape_x, win_shape_y = window_shape win_shape_z = sparse_shape[-1] else: win_shape_x, win_shape_y, win_shape_z = window_shape sparse_shape_x, sparse_shape_y, sparse_shape_z = sparse_shape assert sparse_shape_z < sparse_shape_x, 'Usually holds... in case of wrong order' max_num_win_x = int(np.ceil((sparse_shape_x / win_shape_x)) + 1) # plus one here to meet the needs of shift. max_num_win_y = int(np.ceil((sparse_shape_y / win_shape_y)) + 1) # plus one here to meet the needs of shift. max_num_win_z = int(np.ceil((sparse_shape_z / win_shape_z)) + 1) # plus one here to meet the needs of shift. max_num_win_per_sample = max_num_win_x * max_num_win_y * max_num_win_z if do_shift: if shift_list is not None: shift_x, shift_y, shift_z = shift_list[0], shift_list[1], shift_list[2] else: shift_x, shift_y, shift_z = win_shape_x // 2, win_shape_y // 2, win_shape_z // 2 else: if shift_list is not None: shift_x, shift_y, shift_z = shift_list[0], shift_list[1], shift_list[2] else: shift_x, shift_y, shift_z = win_shape_x, win_shape_y, win_shape_z # compatibility between 2D window and 3D window if sparse_shape_z == win_shape_z: shift_z = 0 shifted_coors_x = coors[:, 3] + shift_x shifted_coors_y = coors[:, 2] + shift_y shifted_coors_z = coors[:, 1] + shift_z win_coors_x = shifted_coors_x // win_shape_x win_coors_y = shifted_coors_y // win_shape_y win_coors_z = shifted_coors_z // win_shape_z if len(window_shape) == 2: assert (win_coors_z == 0).all() batch_win_inds = coors[:, 0] * max_num_win_per_sample + \ win_coors_x * max_num_win_y * max_num_win_z + \ win_coors_y * max_num_win_z + \ win_coors_z coors_in_win_x = shifted_coors_x % win_shape_x coors_in_win_y = shifted_coors_y % win_shape_y coors_in_win_z = shifted_coors_z % win_shape_z coors_in_win = torch.stack([coors_in_win_z, coors_in_win_y, coors_in_win_x], dim=-1) # coors_in_win = torch.stack([coors_in_win_x, coors_in_win_y], dim=-1) if return_win_coors: batch_win_coords = torch.stack([win_coors_z, win_coors_y, win_coors_x], dim=-1) return batch_win_inds, coors_in_win, batch_win_coords return batch_win_inds, coors_in_win def get_pooling_index(coors, sparse_shape, window_shape): win_shape_x, win_shape_y, win_shape_z = window_shape sparse_shape_x, sparse_shape_y, sparse_shape_z = sparse_shape max_num_win_x = int(np.ceil((sparse_shape_x / win_shape_x))) max_num_win_y = int(np.ceil((sparse_shape_y / win_shape_y))) max_num_win_z = int(np.ceil((sparse_shape_z / win_shape_z))) max_num_win_per_sample = max_num_win_x * max_num_win_y * max_num_win_z coors_x = coors[:, 3] coors_y = coors[:, 2] coors_z = coors[:, 1] win_coors_x = coors_x // win_shape_x win_coors_y = coors_y // win_shape_y win_coors_z = coors_z // win_shape_z batch_win_inds = coors[:, 0] * max_num_win_per_sample + \ win_coors_x * max_num_win_y * max_num_win_z + \ win_coors_y * max_num_win_z + \ win_coors_z coors_in_win_x = coors_x % win_shape_x coors_in_win_y = coors_y % win_shape_y coors_in_win_z = coors_z % win_shape_z coors_in_win = torch.stack([coors_in_win_z, coors_in_win_y, coors_in_win_x], dim=-1) index_in_win = coors_in_win_x * win_shape_y * win_shape_z + \ coors_in_win_y * win_shape_z + \ coors_in_win_z batch_win_coords = torch.stack([coors[:, 0], win_coors_z, win_coors_y, win_coors_x], dim=-1) return batch_win_inds, coors_in_win, index_in_win, batch_win_coords def get_continous_inds(setnum_per_win): ''' Args: setnum_per_win (Tensor[int]): Number of sets assigned to each window with shape (win_num). Returns: set_win_inds (Tensor[int]): Window indexs of each set with shape (set_num). set_inds_in_win (Tensor[int]): Set indexs inner window with shape (set_num). Examples: setnum_per_win = torch.tensor([1, 2, 1, 3]) set_inds_in_win = get_continous_inds(setnum_per_win) # we can get: set_inds_in_win = tensor([0, 0, 1, 0, 0, 1, 2]) ''' set_num = setnum_per_win.sum().item() # set_num = 7 setnum_per_win_cumsum = torch.cumsum(setnum_per_win, dim=0)[:-1] # [1, 3, 4] set_win_inds = torch.full((set_num,), 0, device=setnum_per_win.device) set_win_inds[setnum_per_win_cumsum] = 1 # [0, 1, 0, 1, 1, 0, 0] set_win_inds = torch.cumsum(set_win_inds, dim=0) # [0, 1, 1, 2, 3, 3, 3] roll_set_win_inds_left = torch.roll(set_win_inds, -1) # [1, 1, 2, 3, 3, 3, 0] diff = set_win_inds - roll_set_win_inds_left # [-1, 0, -1, -1, 0, 0, 3] end_pos_mask = diff != 0 template = torch.ones_like(set_win_inds) template[end_pos_mask] = (setnum_per_win - 1) * -1 # [ 0, 1, -1, 0, 1, 1, -2] set_inds_in_win = torch.cumsum(template,dim=0) # [0, 1, 0, 0, 1, 2, 0] set_inds_in_win[end_pos_mask] = setnum_per_win # [1, 1, 2, 1, 1, 2, 3] set_inds_in_win = set_inds_in_win - 1 # [0, 0, 1, 0, 0, 1, 2] return set_win_inds, set_inds_in_win