""" Evaluation Server Written by Jiageng Mao """ import numpy as np import numba from .iou_utils import rotate_iou_gpu_eval from .eval_utils import compute_split_parts, overall_filter, distance_filter, overall_distance_filter iou_threshold_dict = { 'Car': 0.7, 'Bus': 0.7, 'Truck': 0.7, 'Pedestrian': 0.3, 'Cyclist': 0.5 } superclass_iou_threshold_dict = { 'Vehicle': 0.7, 'Pedestrian': 0.3, 'Cyclist': 0.5 } def get_evaluation_results(gt_annos, pred_annos, classes, use_superclass=True, iou_thresholds=None, num_pr_points=50, difficulty_mode='Overall&Distance', ap_with_heading=True, num_parts=100, print_ok=False ): if iou_thresholds is None: if use_superclass: iou_thresholds = superclass_iou_threshold_dict else: iou_thresholds = iou_threshold_dict assert len(gt_annos) == len(pred_annos), "the number of GT must match predictions" assert difficulty_mode in ['Overall&Distance', 'Overall', 'Distance'], "difficulty mode is not supported" if use_superclass: if ('Car' in classes) or ('Bus' in classes) or ('Truck' in classes): assert ('Car' in classes) and ('Bus' in classes) and ('Truck' in classes), "Car/Bus/Truck must all exist for vehicle detection" classes = [cls_name for cls_name in classes if cls_name not in ['Car', 'Bus', 'Truck']] classes.insert(0, 'Vehicle') num_samples = len(gt_annos) split_parts = compute_split_parts(num_samples, num_parts) ious = compute_iou3d(gt_annos, pred_annos, split_parts, with_heading=ap_with_heading) num_classes = len(classes) if difficulty_mode == 'Distance': num_difficulties = 3 difficulty_types = ['0-30m', '30-50m', '50m-inf'] elif difficulty_mode == 'Overall': num_difficulties = 1 difficulty_types = ['overall'] elif difficulty_mode == 'Overall&Distance': num_difficulties = 4 difficulty_types = ['overall', '0-30m', '30-50m', '50m-inf'] else: raise NotImplementedError precision = np.zeros([num_classes, num_difficulties, num_pr_points+1]) recall = np.zeros([num_classes, num_difficulties, num_pr_points+1]) for cls_idx, cur_class in enumerate(classes): iou_threshold = iou_thresholds[cur_class] for diff_idx in range(num_difficulties): ### filter data & determine score thresholds on p-r curve ### accum_all_scores, gt_flags, pred_flags = [], [], [] num_valid_gt = 0 for sample_idx in range(num_samples): gt_anno = gt_annos[sample_idx] pred_anno = pred_annos[sample_idx] pred_score = pred_anno['score'] iou = ious[sample_idx] gt_flag, pred_flag = filter_data(gt_anno, pred_anno, difficulty_mode, difficulty_level=diff_idx, class_name=cur_class, use_superclass=use_superclass) gt_flags.append(gt_flag) pred_flags.append(pred_flag) num_valid_gt += sum(gt_flag == 0) accum_scores = accumulate_scores(iou, pred_score, gt_flag, pred_flag, iou_threshold=iou_threshold) accum_all_scores.append(accum_scores) all_scores = np.concatenate(accum_all_scores, axis=0) thresholds = get_thresholds(all_scores, num_valid_gt, num_pr_points=num_pr_points) ### compute tp/fp/fn ### confusion_matrix = np.zeros([len(thresholds), 3]) # only record tp/fp/fn for sample_idx in range(num_samples): pred_score = pred_annos[sample_idx]['score'] iou = ious[sample_idx] gt_flag, pred_flag = gt_flags[sample_idx], pred_flags[sample_idx] for th_idx, score_th in enumerate(thresholds): tp, fp, fn = compute_statistics(iou, pred_score, gt_flag, pred_flag, score_threshold=score_th, iou_threshold=iou_threshold) confusion_matrix[th_idx, 0] += tp confusion_matrix[th_idx, 1] += fp confusion_matrix[th_idx, 2] += fn ### draw p-r curve ### for th_idx in range(len(thresholds)): recall[cls_idx, diff_idx, th_idx] = confusion_matrix[th_idx, 0] / \ (confusion_matrix[th_idx, 0] + confusion_matrix[th_idx, 2]) precision[cls_idx, diff_idx, th_idx] = confusion_matrix[th_idx, 0] / \ (confusion_matrix[th_idx, 0] + confusion_matrix[th_idx, 1]) for th_idx in range(len(thresholds)): precision[cls_idx, diff_idx, th_idx] = np.max( precision[cls_idx, diff_idx, th_idx:], axis=-1) recall[cls_idx, diff_idx, th_idx] = np.max( recall[cls_idx, diff_idx, th_idx:], axis=-1) AP = 0 for i in range(1, precision.shape[-1]): AP += precision[..., i] AP = AP / num_pr_points * 100 ret_dict = {} ret_str = "\n|AP@%-9s|" % (str(num_pr_points)) for diff_type in difficulty_types: ret_str += '%-12s|' % diff_type ret_str += '\n' for cls_idx, cur_class in enumerate(classes): ret_str += "|%-12s|" % cur_class for diff_idx in range(num_difficulties): diff_type = difficulty_types[diff_idx] key = 'AP_' + cur_class + '/' + diff_type ap_score = AP[cls_idx,diff_idx] ret_dict[key] = ap_score ret_str += "%-12.2f|" % ap_score ret_str += "\n" mAP = np.mean(AP, axis=0) ret_str += "|%-12s|" % 'mAP' for diff_idx in range(num_difficulties): diff_type = difficulty_types[diff_idx] key = 'AP_mean' + '/' + diff_type ap_score = mAP[diff_idx] ret_dict[key] = ap_score ret_str += "%-12.2f|" % ap_score ret_str += "\n" if print_ok: print(ret_str) return ret_str, ret_dict @numba.jit(nopython=True) def get_thresholds(scores, num_gt, num_pr_points): eps = 1e-6 scores.sort() scores = scores[::-1] recall_level = 0 thresholds = [] for i, score in enumerate(scores): l_recall = (i + 1) / num_gt if i < (len(scores) - 1): r_recall = (i + 2) / num_gt else: r_recall = l_recall if (r_recall + l_recall < 2 * recall_level) and i < (len(scores) - 1): continue thresholds.append(score) recall_level += 1 / num_pr_points # avoid numerical errors # while r_recall + l_recall >= 2 * recall_level: while r_recall + l_recall + eps > 2 * recall_level: thresholds.append(score) recall_level += 1 / num_pr_points return thresholds @numba.jit(nopython=True) def accumulate_scores(iou, pred_scores, gt_flag, pred_flag, iou_threshold): num_gt = iou.shape[0] num_pred = iou.shape[1] assigned = np.full(num_pred, False) accum_scores = np.zeros(num_gt) accum_idx = 0 for i in range(num_gt): if gt_flag[i] == -1: # not the same class continue det_idx = -1 detected_score = -1 for j in range(num_pred): if pred_flag[j] == -1: # not the same class continue if assigned[j]: continue iou_ij = iou[i, j] pred_score = pred_scores[j] if (iou_ij > iou_threshold) and (pred_score > detected_score): det_idx = j detected_score = pred_score if (detected_score == -1) and (gt_flag[i] == 0): # false negative pass elif (detected_score != -1) and (gt_flag[i] == 1 or pred_flag[det_idx] == 1): # ignore assigned[det_idx] = True elif detected_score != -1: # true positive accum_scores[accum_idx] = pred_scores[det_idx] accum_idx += 1 assigned[det_idx] = True return accum_scores[:accum_idx] @numba.jit(nopython=True) def compute_statistics(iou, pred_scores, gt_flag, pred_flag, score_threshold, iou_threshold): num_gt = iou.shape[0] num_pred = iou.shape[1] assigned = np.full(num_pred, False) under_threshold = pred_scores < score_threshold tp, fp, fn = 0, 0, 0 for i in range(num_gt): if gt_flag[i] == -1: # different classes continue det_idx = -1 detected = False best_matched_iou = 0 gt_assigned_to_ignore = False for j in range(num_pred): if pred_flag[j] == -1: # different classes continue if assigned[j]: # already assigned to other GT continue if under_threshold[j]: # compute only boxes above threshold continue iou_ij = iou[i, j] if (iou_ij > iou_threshold) and (iou_ij > best_matched_iou or gt_assigned_to_ignore) and pred_flag[j] == 0: best_matched_iou = iou_ij det_idx = j detected = True gt_assigned_to_ignore = False elif (iou_ij > iou_threshold) and (not detected) and pred_flag[j] == 1: det_idx = j detected = True gt_assigned_to_ignore = True if (not detected) and gt_flag[i] == 0: # false negative fn += 1 elif detected and (gt_flag[i] == 1 or pred_flag[det_idx] == 1): # ignore assigned[det_idx] = True elif detected: # true positive tp += 1 assigned[det_idx] = True for j in range(num_pred): if not (assigned[j] or pred_flag[j] == -1 or pred_flag[j] == 1 or under_threshold[j]): fp += 1 return tp, fp, fn def filter_data(gt_anno, pred_anno, difficulty_mode, difficulty_level, class_name, use_superclass): """ Filter data by class name and difficulty Args: gt_anno: pred_anno: difficulty_mode: difficulty_level: class_name: Returns: gt_flags/pred_flags: 1 : same class but ignored with different difficulty levels 0 : accepted -1 : rejected with different classes """ num_gt = len(gt_anno['name']) gt_flag = np.zeros(num_gt, dtype=np.int64) if use_superclass: if class_name == 'Vehicle': reject = np.logical_or(gt_anno['name']=='Pedestrian', gt_anno['name']=='Cyclist') else: reject = gt_anno['name'] != class_name else: reject = gt_anno['name'] != class_name gt_flag[reject] = -1 num_pred = len(pred_anno['name']) pred_flag = np.zeros(num_pred, dtype=np.int64) if use_superclass: if class_name == 'Vehicle': reject = np.logical_or(pred_anno['name']=='Pedestrian', pred_anno['name']=='Cyclist') else: reject = pred_anno['name'] != class_name else: reject = pred_anno['name'] != class_name pred_flag[reject] = -1 if difficulty_mode == 'Overall': ignore = overall_filter(gt_anno['boxes_3d']) gt_flag[ignore] = 1 ignore = overall_filter(pred_anno['boxes_3d']) pred_flag[ignore] = 1 elif difficulty_mode == 'Distance': ignore = distance_filter(gt_anno['boxes_3d'], difficulty_level) gt_flag[ignore] = 1 ignore = distance_filter(pred_anno['boxes_3d'], difficulty_level) pred_flag[ignore] = 1 elif difficulty_mode == 'Overall&Distance': ignore = overall_distance_filter(gt_anno['boxes_3d'], difficulty_level) gt_flag[ignore] = 1 ignore = overall_distance_filter(pred_anno['boxes_3d'], difficulty_level) pred_flag[ignore] = 1 else: raise NotImplementedError return gt_flag, pred_flag def iou3d_kernel(gt_boxes, pred_boxes): """ Core iou3d computation (with cuda) Args: gt_boxes: [N, 7] (x, y, z, w, l, h, rot) in Lidar coordinates pred_boxes: [M, 7] Returns: iou3d: [N, M] """ intersection_2d = rotate_iou_gpu_eval(gt_boxes[:, [0, 1, 3, 4, 6]], pred_boxes[:, [0, 1, 3, 4, 6]], criterion=2) gt_max_h = gt_boxes[:, [2]] + gt_boxes[:, [5]] * 0.5 gt_min_h = gt_boxes[:, [2]] - gt_boxes[:, [5]] * 0.5 pred_max_h = pred_boxes[:, [2]] + pred_boxes[:, [5]] * 0.5 pred_min_h = pred_boxes[:, [2]] - pred_boxes[:, [5]] * 0.5 max_of_min = np.maximum(gt_min_h, pred_min_h.T) min_of_max = np.minimum(gt_max_h, pred_max_h.T) inter_h = min_of_max - max_of_min inter_h[inter_h <= 0] = 0 #inter_h[intersection_2d <= 0] = 0 intersection_3d = intersection_2d * inter_h gt_vol = gt_boxes[:, [3]] * gt_boxes[:, [4]] * gt_boxes[:, [5]] pred_vol = pred_boxes[:, [3]] * pred_boxes[:, [4]] * pred_boxes[:, [5]] union_3d = gt_vol + pred_vol.T - intersection_3d #eps = 1e-6 #union_3d[union_3d= np.pi] = reverse_diff_rot[diff_rot >= np.pi] # constrain to [0-pi] iou3d[diff_rot > np.pi/2] = 0 # unmatched if diff_rot > 90 return iou3d def compute_iou3d(gt_annos, pred_annos, split_parts, with_heading): """ Compute iou3d of all samples by parts Args: with_heading: filter with heading gt_annos: list of dicts for each sample pred_annos: split_parts: for part-based iou computation Returns: ious: list of iou arrays for each sample """ gt_num_per_sample = np.stack([len(anno["name"]) for anno in gt_annos], 0) pred_num_per_sample = np.stack([len(anno["name"]) for anno in pred_annos], 0) ious = [] sample_idx = 0 for num_part_samples in split_parts: gt_annos_part = gt_annos[sample_idx:sample_idx + num_part_samples] pred_annos_part = pred_annos[sample_idx:sample_idx + num_part_samples] gt_boxes = np.concatenate([anno["boxes_3d"] for anno in gt_annos_part], 0) pred_boxes = np.concatenate([anno["boxes_3d"] for anno in pred_annos_part], 0) if with_heading: iou3d_part = iou3d_kernel_with_heading(gt_boxes, pred_boxes) else: iou3d_part = iou3d_kernel(gt_boxes, pred_boxes) gt_num_idx, pred_num_idx = 0, 0 for idx in range(num_part_samples): gt_box_num = gt_num_per_sample[sample_idx + idx] pred_box_num = pred_num_per_sample[sample_idx + idx] ious.append(iou3d_part[gt_num_idx: gt_num_idx + gt_box_num, pred_num_idx: pred_num_idx+pred_box_num]) gt_num_idx += gt_box_num pred_num_idx += pred_box_num sample_idx += num_part_samples return ious