from functools import partial import numpy as np from skimage import transform import torch import torchvision from ...utils import box_utils, common_utils tv = None try: import cumm.tensorview as tv except: pass class VoxelGeneratorWrapper(): def __init__(self, vsize_xyz, coors_range_xyz, num_point_features, max_num_points_per_voxel, max_num_voxels): try: from spconv.utils import VoxelGeneratorV2 as VoxelGenerator self.spconv_ver = 1 except: try: from spconv.utils import VoxelGenerator self.spconv_ver = 1 except: from spconv.utils import Point2VoxelCPU3d as VoxelGenerator self.spconv_ver = 2 if self.spconv_ver == 1: self._voxel_generator = VoxelGenerator( voxel_size=vsize_xyz, point_cloud_range=coors_range_xyz, max_num_points=max_num_points_per_voxel, max_voxels=max_num_voxels ) else: self._voxel_generator = VoxelGenerator( vsize_xyz=vsize_xyz, coors_range_xyz=coors_range_xyz, num_point_features=num_point_features, max_num_points_per_voxel=max_num_points_per_voxel, max_num_voxels=max_num_voxels ) def generate(self, points): if self.spconv_ver == 1: voxel_output = self._voxel_generator.generate(points) if isinstance(voxel_output, dict): voxels, coordinates, num_points = \ voxel_output['voxels'], voxel_output['coordinates'], voxel_output['num_points_per_voxel'] else: voxels, coordinates, num_points = voxel_output else: assert tv is not None, f"Unexpected error, library: 'cumm' wasn't imported properly." voxel_output = self._voxel_generator.point_to_voxel(tv.from_numpy(points)) tv_voxels, tv_coordinates, tv_num_points = voxel_output # make copy with numpy(), since numpy_view() will disappear as soon as the generator is deleted voxels = tv_voxels.numpy() coordinates = tv_coordinates.numpy() num_points = tv_num_points.numpy() return voxels, coordinates, num_points class DataProcessor(object): def __init__(self, processor_configs, point_cloud_range, training, num_point_features): self.point_cloud_range = point_cloud_range self.training = training self.num_point_features = num_point_features self.mode = 'train' if training else 'test' self.grid_size = self.voxel_size = None self.data_processor_queue = [] self.voxel_generator = None for cur_cfg in processor_configs: cur_processor = getattr(self, cur_cfg.NAME)(config=cur_cfg) self.data_processor_queue.append(cur_processor) def mask_points_and_boxes_outside_range(self, data_dict=None, config=None): if data_dict is None: return partial(self.mask_points_and_boxes_outside_range, config=config) if data_dict.get('points', None) is not None: mask = common_utils.mask_points_by_range(data_dict['points'], self.point_cloud_range) data_dict['points'] = data_dict['points'][mask] if data_dict.get('gt_boxes', None) is not None and config.REMOVE_OUTSIDE_BOXES and self.training: mask = box_utils.mask_boxes_outside_range_numpy( data_dict['gt_boxes'], self.point_cloud_range, min_num_corners=config.get('min_num_corners', 1), use_center_to_filter=config.get('USE_CENTER_TO_FILTER', True) ) data_dict['gt_boxes'] = data_dict['gt_boxes'][mask] return data_dict def shuffle_points(self, data_dict=None, config=None): if data_dict is None: return partial(self.shuffle_points, config=config) if config.SHUFFLE_ENABLED[self.mode]: points = data_dict['points'] shuffle_idx = np.random.permutation(points.shape[0]) points = points[shuffle_idx] data_dict['points'] = points return data_dict def transform_points_to_voxels_placeholder(self, data_dict=None, config=None): # just calculate grid size if data_dict is None: grid_size = (self.point_cloud_range[3:6] - self.point_cloud_range[0:3]) / np.array(config.VOXEL_SIZE) self.grid_size = np.round(grid_size).astype(np.int64) self.voxel_size = config.VOXEL_SIZE return partial(self.transform_points_to_voxels_placeholder, config=config) return data_dict def double_flip(self, points): # y flip points_yflip = points.copy() points_yflip[:, 1] = -points_yflip[:, 1] # x flip points_xflip = points.copy() points_xflip[:, 0] = -points_xflip[:, 0] # x y flip points_xyflip = points.copy() points_xyflip[:, 0] = -points_xyflip[:, 0] points_xyflip[:, 1] = -points_xyflip[:, 1] return points_yflip, points_xflip, points_xyflip def transform_points_to_voxels(self, data_dict=None, config=None): if data_dict is None: grid_size = (self.point_cloud_range[3:6] - self.point_cloud_range[0:3]) / np.array(config.VOXEL_SIZE) self.grid_size = np.round(grid_size).astype(np.int64) self.voxel_size = config.VOXEL_SIZE # just bind the config, we will create the VoxelGeneratorWrapper later, # to avoid pickling issues in multiprocess spawn return partial(self.transform_points_to_voxels, config=config) if self.voxel_generator is None: self.voxel_generator = VoxelGeneratorWrapper( vsize_xyz=config.VOXEL_SIZE, coors_range_xyz=self.point_cloud_range, num_point_features=self.num_point_features, max_num_points_per_voxel=config.MAX_POINTS_PER_VOXEL, max_num_voxels=config.MAX_NUMBER_OF_VOXELS[self.mode], ) points = data_dict['points'] voxel_output = self.voxel_generator.generate(points) voxels, coordinates, num_points = voxel_output if not data_dict['use_lead_xyz']: voxels = voxels[..., 3:] # remove xyz in voxels(N, 3) if config.get('DOUBLE_FLIP', False): voxels_list, voxel_coords_list, voxel_num_points_list = [voxels], [coordinates], [num_points] points_yflip, points_xflip, points_xyflip = self.double_flip(points) points_list = [points_yflip, points_xflip, points_xyflip] keys = ['yflip', 'xflip', 'xyflip'] for i, key in enumerate(keys): voxel_output = self.voxel_generator.generate(points_list[i]) voxels, coordinates, num_points = voxel_output if not data_dict['use_lead_xyz']: voxels = voxels[..., 3:] voxels_list.append(voxels) voxel_coords_list.append(coordinates) voxel_num_points_list.append(num_points) data_dict['voxels'] = voxels_list data_dict['voxel_coords'] = voxel_coords_list data_dict['voxel_num_points'] = voxel_num_points_list else: data_dict['voxels'] = voxels data_dict['voxel_coords'] = coordinates data_dict['voxel_num_points'] = num_points return data_dict def sample_points(self, data_dict=None, config=None): if data_dict is None: return partial(self.sample_points, config=config) num_points = config.NUM_POINTS[self.mode] if num_points == -1: return data_dict points = data_dict['points'] if num_points < len(points): pts_depth = np.linalg.norm(points[:, 0:3], axis=1) pts_near_flag = pts_depth < 40.0 far_idxs_choice = np.where(pts_near_flag == 0)[0] near_idxs = np.where(pts_near_flag == 1)[0] choice = [] if num_points > len(far_idxs_choice): near_idxs_choice = np.random.choice(near_idxs, num_points - len(far_idxs_choice), replace=False) choice = np.concatenate((near_idxs_choice, far_idxs_choice), axis=0) \ if len(far_idxs_choice) > 0 else near_idxs_choice else: choice = np.arange(0, len(points), dtype=np.int32) choice = np.random.choice(choice, num_points, replace=False) np.random.shuffle(choice) else: choice = np.arange(0, len(points), dtype=np.int32) if num_points > len(points): extra_choice = np.random.choice(choice, num_points - len(points), replace=False) choice = np.concatenate((choice, extra_choice), axis=0) np.random.shuffle(choice) data_dict['points'] = points[choice] return data_dict def calculate_grid_size(self, data_dict=None, config=None): if data_dict is None: grid_size = (self.point_cloud_range[3:6] - self.point_cloud_range[0:3]) / np.array(config.VOXEL_SIZE) self.grid_size = np.round(grid_size).astype(np.int64) self.voxel_size = config.VOXEL_SIZE return partial(self.calculate_grid_size, config=config) return data_dict def downsample_depth_map(self, data_dict=None, config=None): if data_dict is None: self.depth_downsample_factor = config.DOWNSAMPLE_FACTOR return partial(self.downsample_depth_map, config=config) data_dict['depth_maps'] = transform.downscale_local_mean( image=data_dict['depth_maps'], factors=(self.depth_downsample_factor, self.depth_downsample_factor) ) return data_dict def image_normalize(self, data_dict=None, config=None): if data_dict is None: return partial(self.image_normalize, config=config) mean = config.mean std = config.std compose = torchvision.transforms.Compose( [ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=mean, std=std), ] ) data_dict["camera_imgs"] = [compose(img) for img in data_dict["camera_imgs"]] return data_dict def image_calibrate(self,data_dict=None, config=None): if data_dict is None: return partial(self.image_calibrate, config=config) img_process_infos = data_dict['img_process_infos'] transforms = [] for img_process_info in img_process_infos: resize, crop, flip, rotate = img_process_info rotation = torch.eye(2) translation = torch.zeros(2) # post-homography transformation rotation *= resize translation -= torch.Tensor(crop[:2]) if flip: A = torch.Tensor([[-1, 0], [0, 1]]) b = torch.Tensor([crop[2] - crop[0], 0]) rotation = A.matmul(rotation) translation = A.matmul(translation) + b theta = rotate / 180 * np.pi A = torch.Tensor( [ [np.cos(theta), np.sin(theta)], [-np.sin(theta), np.cos(theta)], ] ) b = torch.Tensor([crop[2] - crop[0], crop[3] - crop[1]]) / 2 b = A.matmul(-b) + b rotation = A.matmul(rotation) translation = A.matmul(translation) + b transform = torch.eye(4) transform[:2, :2] = rotation transform[:2, 3] = translation transforms.append(transform.numpy()) data_dict["img_aug_matrix"] = transforms return data_dict def forward(self, data_dict): """ Args: data_dict: points: (N, 3 + C_in) gt_boxes: optional, (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...] gt_names: optional, (N), string ... Returns: """ for cur_processor in self.data_processor_queue: data_dict = cur_processor(data_dict=data_dict) return data_dict