/* Stacked-batch-data version of ball query, modified from the original implementation of official PointNet++ codes. Written by Shaoshuai Shi All Rights Reserved 2019-2020. */ #include #include #include #include "ball_query_gpu.h" #include "cuda_utils.h" __global__ void ball_query_kernel_stack(int B, int M, float radius, int nsample, \ const float *new_xyz, const int *new_xyz_batch_cnt, const float *xyz, const int *xyz_batch_cnt, int *idx) { // :param xyz: (N1 + N2 ..., 3) xyz coordinates of the features // :param xyz_batch_cnt: (batch_size), [N1, N2, ...] // :param new_xyz: (M1 + M2 ..., 3) centers of the ball query // :param new_xyz_batch_cnt: (batch_size), [M1, M2, ...] // output: // idx: (M, nsample) int pt_idx = blockIdx.x * blockDim.x + threadIdx.x; if (pt_idx >= M) return; int bs_idx = 0, pt_cnt = new_xyz_batch_cnt[0]; for (int k = 1; k < B; k++){ if (pt_idx < pt_cnt) break; pt_cnt += new_xyz_batch_cnt[k]; bs_idx = k; } int xyz_batch_start_idx = 0; for (int k = 0; k < bs_idx; k++) xyz_batch_start_idx += xyz_batch_cnt[k]; // for (int k = 0; k < bs_idx; k++) new_xyz_batch_start_idx += new_xyz_batch_cnt[k]; new_xyz += pt_idx * 3; xyz += xyz_batch_start_idx * 3; idx += pt_idx * nsample; float radius2 = radius * radius; float new_x = new_xyz[0]; float new_y = new_xyz[1]; float new_z = new_xyz[2]; int n = xyz_batch_cnt[bs_idx]; int cnt = 0; for (int k = 0; k < n; ++k) { float x = xyz[k * 3 + 0]; float y = xyz[k * 3 + 1]; float z = xyz[k * 3 + 2]; float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) + (new_z - z) * (new_z - z); if (d2 < radius2){ if (cnt == 0){ for (int l = 0; l < nsample; ++l) { idx[l] = k; } } idx[cnt] = k; ++cnt; if (cnt >= nsample) break; } } if (cnt == 0) idx[0] = -1; } void ball_query_kernel_launcher_stack(int B, int M, float radius, int nsample, const float *new_xyz, const int *new_xyz_batch_cnt, const float *xyz, const int *xyz_batch_cnt, int *idx){ // :param xyz: (N1 + N2 ..., 3) xyz coordinates of the features // :param xyz_batch_cnt: (batch_size), [N1, N2, ...] // :param new_xyz: (M1 + M2 ..., 3) centers of the ball query // :param new_xyz_batch_cnt: (batch_size), [M1, M2, ...] // output: // idx: (M, nsample) cudaError_t err; dim3 blocks(DIVUP(M, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row) dim3 threads(THREADS_PER_BLOCK); ball_query_kernel_stack<<>>(B, M, radius, nsample, new_xyz, new_xyz_batch_cnt, xyz, xyz_batch_cnt, idx); // cudaDeviceSynchronize(); // for using printf in kernel function err = cudaGetLastError(); if (cudaSuccess != err) { fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err)); exit(-1); } }