""" 3D IoU Calculation and Rotated NMS Written by Shaoshuai Shi All Rights Reserved 2019-2020. """ import torch from ...utils import common_utils from . import iou3d_nms_cuda def boxes_bev_iou_cpu(boxes_a, boxes_b): """ Args: boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading] Returns: ans_iou: (N, M) """ boxes_a, is_numpy = common_utils.check_numpy_to_torch(boxes_a) boxes_b, is_numpy = common_utils.check_numpy_to_torch(boxes_b) assert not (boxes_a.is_cuda or boxes_b.is_cuda), 'Only support CPU tensors' assert boxes_a.shape[1] == 7 and boxes_b.shape[1] == 7 ans_iou = boxes_a.new_zeros(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))) iou3d_nms_cuda.boxes_iou_bev_cpu(boxes_a.contiguous(), boxes_b.contiguous(), ans_iou) return ans_iou.numpy() if is_numpy else ans_iou def boxes_iou_bev(boxes_a, boxes_b): """ Args: boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading] Returns: ans_iou: (N, M) """ assert boxes_a.shape[1] == boxes_b.shape[1] == 7 ans_iou = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))).zero_() iou3d_nms_cuda.boxes_iou_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), ans_iou) return ans_iou def boxes_iou3d_gpu(boxes_a, boxes_b): """ Args: boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading] Returns: ans_iou: (N, M) """ assert boxes_a.shape[1] == boxes_b.shape[1] == 7 # height overlap boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1) boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1) boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(1, -1) boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(1, -1) # bev overlap overlaps_bev = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))).zero_() # (N, M) iou3d_nms_cuda.boxes_overlap_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), overlaps_bev) max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min) min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max) overlaps_h = torch.clamp(min_of_max - max_of_min, min=0) # 3d iou overlaps_3d = overlaps_bev * overlaps_h vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1) vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(1, -1) iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6) return iou3d def boxes_aligned_iou3d_gpu(boxes_a, boxes_b): """ Args: boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading] Returns: ans_iou: (N,) """ assert boxes_a.shape[0] == boxes_b.shape[0] assert boxes_a.shape[1] == boxes_b.shape[1] == 7 # height overlap boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1) boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1) boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(-1, 1) boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(-1, 1) # bev overlap overlaps_bev = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], 1))).zero_() # (N, M) iou3d_nms_cuda.boxes_aligned_overlap_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), overlaps_bev) max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min) min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max) overlaps_h = torch.clamp(min_of_max - max_of_min, min=0) # 3d iou overlaps_3d = overlaps_bev * overlaps_h vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1) vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(-1, 1) iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6) return iou3d def nms_gpu(boxes, scores, thresh, pre_maxsize=None, **kwargs): """ :param boxes: (N, 7) [x, y, z, dx, dy, dz, heading] :param scores: (N) :param thresh: :return: """ assert boxes.shape[1] == 7 order = scores.sort(0, descending=True)[1] if pre_maxsize is not None: order = order[:pre_maxsize] boxes = boxes[order].contiguous() keep = torch.LongTensor(boxes.size(0)) num_out = iou3d_nms_cuda.nms_gpu(boxes, keep, thresh) return order[keep[:num_out].cuda()].contiguous(), None def nms_normal_gpu(boxes, scores, thresh, **kwargs): """ :param boxes: (N, 7) [x, y, z, dx, dy, dz, heading] :param scores: (N) :param thresh: :return: """ assert boxes.shape[1] == 7 order = scores.sort(0, descending=True)[1] boxes = boxes[order].contiguous() keep = torch.LongTensor(boxes.size(0)) num_out = iou3d_nms_cuda.nms_normal_gpu(boxes, keep, thresh) return order[keep[:num_out].cuda()].contiguous(), None def paired_boxes_iou3d_gpu(boxes_a, boxes_b): """ Args: boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading] boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading] Returns: ans_iou: (N) """ assert boxes_a.shape[0] == boxes_b.shape[0] assert boxes_a.shape[1] == boxes_b.shape[1] == 7 # height overlap boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1) boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1) boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(-1, 1) boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(-1, 1) # bev overlap overlaps_bev = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], 1))).zero_() # (N, ``) iou3d_nms_cuda.paired_boxes_overlap_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), overlaps_bev) max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min) min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max) overlaps_h = torch.clamp(min_of_max - max_of_min, min=0) # 3d iou overlaps_3d = overlaps_bev * overlaps_h vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1) vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(-1, 1) iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6) return iou3d.view(-1)