# OpenPCDet PyTorch Dataloader and Evaluation Tools for Waymo Open Dataset # Reference https://github.com/open-mmlab/OpenPCDet # Written by Shaoshuai Shi, Chaoxu Guo # All Rights Reserved 2019-2020. import os import pickle import numpy as np from ...utils import common_utils import tensorflow as tf from waymo_open_dataset.utils import frame_utils, transform_utils, range_image_utils from waymo_open_dataset import dataset_pb2 try: tf.enable_eager_execution() except: pass WAYMO_CLASSES = ['unknown', 'Vehicle', 'Pedestrian', 'Sign', 'Cyclist'] def generate_labels(frame, pose): obj_name, difficulty, dimensions, locations, heading_angles = [], [], [], [], [] tracking_difficulty, speeds, accelerations, obj_ids = [], [], [], [] num_points_in_gt = [] laser_labels = frame.laser_labels for i in range(len(laser_labels)): box = laser_labels[i].box class_ind = laser_labels[i].type loc = [box.center_x, box.center_y, box.center_z] heading_angles.append(box.heading) obj_name.append(WAYMO_CLASSES[class_ind]) difficulty.append(laser_labels[i].detection_difficulty_level) tracking_difficulty.append(laser_labels[i].tracking_difficulty_level) dimensions.append([box.length, box.width, box.height]) # lwh in unified coordinate of OpenPCDet locations.append(loc) obj_ids.append(laser_labels[i].id) num_points_in_gt.append(laser_labels[i].num_lidar_points_in_box) speeds.append([laser_labels[i].metadata.speed_x, laser_labels[i].metadata.speed_y]) accelerations.append([laser_labels[i].metadata.accel_x, laser_labels[i].metadata.accel_y]) annotations = {} annotations['name'] = np.array(obj_name) annotations['difficulty'] = np.array(difficulty) annotations['dimensions'] = np.array(dimensions) annotations['location'] = np.array(locations) annotations['heading_angles'] = np.array(heading_angles) annotations['obj_ids'] = np.array(obj_ids) annotations['tracking_difficulty'] = np.array(tracking_difficulty) annotations['num_points_in_gt'] = np.array(num_points_in_gt) annotations['speed_global'] = np.array(speeds) annotations['accel_global'] = np.array(accelerations) annotations = common_utils.drop_info_with_name(annotations, name='unknown') if annotations['name'].__len__() > 0: global_speed = np.pad(annotations['speed_global'], ((0, 0), (0, 1)), mode='constant', constant_values=0) # (N, 3) speed = np.dot(global_speed, np.linalg.inv(pose[:3, :3].T)) speed = speed[:, :2] gt_boxes_lidar = np.concatenate([ annotations['location'], annotations['dimensions'], annotations['heading_angles'][..., np.newaxis], speed], axis=1 ) else: gt_boxes_lidar = np.zeros((0, 9)) annotations['gt_boxes_lidar'] = gt_boxes_lidar return annotations def convert_range_image_to_point_cloud(frame, range_images, camera_projections, range_image_top_pose, ri_index=(0, 1)): """ Modified from the codes of Waymo Open Dataset. Convert range images to point cloud. Args: frame: open dataset frame range_images: A dict of {laser_name, [range_image_first_return, range_image_second_return]}. camera_projections: A dict of {laser_name, [camera_projection_from_first_return, camera_projection_from_second_return]}. range_image_top_pose: range image pixel pose for top lidar. ri_index: 0 for the first return, 1 for the second return. Returns: points: {[N, 3]} list of 3d lidar points of length 5 (number of lidars). cp_points: {[N, 6]} list of camera projections of length 5 (number of lidars). """ calibrations = sorted(frame.context.laser_calibrations, key=lambda c: c.name) points = [] cp_points = [] points_NLZ = [] points_intensity = [] points_elongation = [] frame_pose = tf.convert_to_tensor(np.reshape(np.array(frame.pose.transform), [4, 4])) # [H, W, 6] range_image_top_pose_tensor = tf.reshape( tf.convert_to_tensor(range_image_top_pose.data), range_image_top_pose.shape.dims ) # [H, W, 3, 3] range_image_top_pose_tensor_rotation = transform_utils.get_rotation_matrix( range_image_top_pose_tensor[..., 0], range_image_top_pose_tensor[..., 1], range_image_top_pose_tensor[..., 2]) range_image_top_pose_tensor_translation = range_image_top_pose_tensor[..., 3:] range_image_top_pose_tensor = transform_utils.get_transform( range_image_top_pose_tensor_rotation, range_image_top_pose_tensor_translation) for c in calibrations: points_single, cp_points_single, points_NLZ_single, points_intensity_single, points_elongation_single \ = [], [], [], [], [] for cur_ri_index in ri_index: range_image = range_images[c.name][cur_ri_index] if len(c.beam_inclinations) == 0: # pylint: disable=g-explicit-length-test beam_inclinations = range_image_utils.compute_inclination( tf.constant([c.beam_inclination_min, c.beam_inclination_max]), height=range_image.shape.dims[0]) else: beam_inclinations = tf.constant(c.beam_inclinations) beam_inclinations = tf.reverse(beam_inclinations, axis=[-1]) extrinsic = np.reshape(np.array(c.extrinsic.transform), [4, 4]) range_image_tensor = tf.reshape( tf.convert_to_tensor(range_image.data), range_image.shape.dims) pixel_pose_local = None frame_pose_local = None if c.name == dataset_pb2.LaserName.TOP: pixel_pose_local = range_image_top_pose_tensor pixel_pose_local = tf.expand_dims(pixel_pose_local, axis=0) frame_pose_local = tf.expand_dims(frame_pose, axis=0) range_image_mask = range_image_tensor[..., 0] > 0 range_image_NLZ = range_image_tensor[..., 3] range_image_intensity = range_image_tensor[..., 1] range_image_elongation = range_image_tensor[..., 2] range_image_cartesian = range_image_utils.extract_point_cloud_from_range_image( tf.expand_dims(range_image_tensor[..., 0], axis=0), tf.expand_dims(extrinsic, axis=0), tf.expand_dims(tf.convert_to_tensor(beam_inclinations), axis=0), pixel_pose=pixel_pose_local, frame_pose=frame_pose_local) range_image_cartesian = tf.squeeze(range_image_cartesian, axis=0) points_tensor = tf.gather_nd(range_image_cartesian, tf.where(range_image_mask)) points_NLZ_tensor = tf.gather_nd(range_image_NLZ, tf.compat.v1.where(range_image_mask)) points_intensity_tensor = tf.gather_nd(range_image_intensity, tf.compat.v1.where(range_image_mask)) points_elongation_tensor = tf.gather_nd(range_image_elongation, tf.compat.v1.where(range_image_mask)) cp = camera_projections[c.name][0] cp_tensor = tf.reshape(tf.convert_to_tensor(cp.data), cp.shape.dims) cp_points_tensor = tf.gather_nd(cp_tensor, tf.where(range_image_mask)) points_single.append(points_tensor.numpy()) cp_points_single.append(cp_points_tensor.numpy()) points_NLZ_single.append(points_NLZ_tensor.numpy()) points_intensity_single.append(points_intensity_tensor.numpy()) points_elongation_single.append(points_elongation_tensor.numpy()) points.append(np.concatenate(points_single, axis=0)) cp_points.append(np.concatenate(cp_points_single, axis=0)) points_NLZ.append(np.concatenate(points_NLZ_single, axis=0)) points_intensity.append(np.concatenate(points_intensity_single, axis=0)) points_elongation.append(np.concatenate(points_elongation_single, axis=0)) return points, cp_points, points_NLZ, points_intensity, points_elongation def save_lidar_points(frame, cur_save_path, use_two_returns=True): ret_outputs = frame_utils.parse_range_image_and_camera_projection(frame) if len(ret_outputs) == 4: range_images, camera_projections, seg_labels, range_image_top_pose = ret_outputs else: assert len(ret_outputs) == 3 range_images, camera_projections, range_image_top_pose = ret_outputs points, cp_points, points_in_NLZ_flag, points_intensity, points_elongation = convert_range_image_to_point_cloud( frame, range_images, camera_projections, range_image_top_pose, ri_index=(0, 1) if use_two_returns else (0,) ) # 3d points in vehicle frame. points_all = np.concatenate(points, axis=0) points_in_NLZ_flag = np.concatenate(points_in_NLZ_flag, axis=0).reshape(-1, 1) points_intensity = np.concatenate(points_intensity, axis=0).reshape(-1, 1) points_elongation = np.concatenate(points_elongation, axis=0).reshape(-1, 1) num_points_of_each_lidar = [point.shape[0] for point in points] save_points = np.concatenate([ points_all, points_intensity, points_elongation, points_in_NLZ_flag ], axis=-1).astype(np.float32) np.save(cur_save_path, save_points) # print('saving to ', cur_save_path) return num_points_of_each_lidar def process_single_sequence(sequence_file, save_path, sampled_interval, has_label=True, use_two_returns=True, update_info_only=False): sequence_name = os.path.splitext(os.path.basename(sequence_file))[0] # print('Load record (sampled_interval=%d): %s' % (sampled_interval, sequence_name)) if not sequence_file.exists(): print('NotFoundError: %s' % sequence_file) return [] dataset = tf.data.TFRecordDataset(str(sequence_file), compression_type='') cur_save_dir = save_path / sequence_name cur_save_dir.mkdir(parents=True, exist_ok=True) pkl_file = cur_save_dir / ('%s.pkl' % sequence_name) sequence_infos = [] if pkl_file.exists(): sequence_infos = pickle.load(open(pkl_file, 'rb')) sequence_infos_old = None if not update_info_only: print('Skip sequence since it has been processed before: %s' % pkl_file) return sequence_infos else: sequence_infos_old = sequence_infos sequence_infos = [] for cnt, data in enumerate(dataset): if cnt % sampled_interval != 0: continue # print(sequence_name, cnt) frame = dataset_pb2.Frame() frame.ParseFromString(bytearray(data.numpy())) info = {} pc_info = {'num_features': 5, 'lidar_sequence': sequence_name, 'sample_idx': cnt} info['point_cloud'] = pc_info info['frame_id'] = sequence_name + ('_%03d' % cnt) info['metadata'] = { 'context_name': frame.context.name, 'timestamp_micros': frame.timestamp_micros } image_info = {} for j in range(5): width = frame.context.camera_calibrations[j].width height = frame.context.camera_calibrations[j].height image_info.update({'image_shape_%d' % j: (height, width)}) info['image'] = image_info pose = np.array(frame.pose.transform, dtype=np.float32).reshape(4, 4) info['pose'] = pose if has_label: annotations = generate_labels(frame, pose=pose) info['annos'] = annotations if update_info_only and sequence_infos_old is not None: assert info['frame_id'] == sequence_infos_old[cnt]['frame_id'] num_points_of_each_lidar = sequence_infos_old[cnt]['num_points_of_each_lidar'] else: num_points_of_each_lidar = save_lidar_points( frame, cur_save_dir / ('%04d.npy' % cnt), use_two_returns=use_two_returns ) info['num_points_of_each_lidar'] = num_points_of_each_lidar sequence_infos.append(info) with open(pkl_file, 'wb') as f: pickle.dump(sequence_infos, f) print('Infos are saved to (sampled_interval=%d): %s' % (sampled_interval, pkl_file)) return sequence_infos