Files
OpenPCDet/pcdet/datasets/once/once_eval/eval_utils.py
2025-09-21 20:18:37 +08:00

53 lines
1.5 KiB
Python

import numpy as np
def compute_split_parts(num_samples, num_parts):
part_samples = num_samples // num_parts
remain_samples = num_samples % num_parts
if part_samples == 0:
return [num_samples]
if remain_samples == 0:
return [part_samples] * num_parts
else:
return [part_samples] * num_parts + [remain_samples]
def overall_filter(boxes):
ignore = np.zeros(boxes.shape[0], dtype=bool) # all false
return ignore
def distance_filter(boxes, level):
ignore = np.ones(boxes.shape[0], dtype=bool) # all true
dist = np.sqrt(np.sum(boxes[:, 0:3] * boxes[:, 0:3], axis=1))
if level == 0: # 0-30m
flag = dist < 30
elif level == 1: # 30-50m
flag = (dist >= 30) & (dist < 50)
elif level == 2: # 50m-inf
flag = dist >= 50
else:
assert False, 'level < 3 for distance metric, found level %s' % (str(level))
ignore[flag] = False
return ignore
def overall_distance_filter(boxes, level):
ignore = np.ones(boxes.shape[0], dtype=bool) # all true
dist = np.sqrt(np.sum(boxes[:, 0:3] * boxes[:, 0:3], axis=1))
if level == 0:
flag = np.ones(boxes.shape[0], dtype=bool)
elif level == 1: # 0-30m
flag = dist < 30
elif level == 2: # 30-50m
flag = (dist >= 30) & (dist < 50)
elif level == 3: # 50m-inf
flag = dist >= 50
else:
assert False, 'level < 4 for overall & distance metric, found level %s' % (str(level))
ignore[flag] = False
return ignore