Files
OpenPCDet/pcdet/models/backbones_3d/spconv_backbone_voxelnext2d.py
2025-09-21 20:18:54 +08:00

220 lines
8.4 KiB
Python

from functools import partial
import torch
import torch.nn as nn
from ...utils.spconv_utils import replace_feature, spconv
def post_act_block(in_channels, out_channels, kernel_size, indice_key=None, stride=1, padding=0,
conv_type='subm', norm_fn=None):
if conv_type == 'subm':
conv = spconv.SubMConv2d(in_channels, out_channels, kernel_size, bias=False, indice_key=indice_key)
elif conv_type == 'spconv':
conv = spconv.SparseConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
bias=False, indice_key=indice_key)
elif conv_type == 'inverseconv':
conv = spconv.SparseInverseConv2d(in_channels, out_channels, kernel_size, indice_key=indice_key, bias=False)
else:
raise NotImplementedError
m = spconv.SparseSequential(
conv,
norm_fn(out_channels),
nn.ReLU(),
)
return m
class SparseBasicBlock(spconv.SparseModule):
expansion = 1
def __init__(self, inplanes, planes, stride=1, norm_fn=None, downsample=None, indice_key=None):
super(SparseBasicBlock, self).__init__()
assert norm_fn is not None
bias = norm_fn is not None
self.conv1 = spconv.SubMConv2d(
inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key
)
self.bn1 = norm_fn(planes)
self.relu = nn.ReLU()
self.conv2 = spconv.SubMConv2d(
planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key
)
self.bn2 = norm_fn(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = replace_feature(out, self.bn1(out.features))
out = replace_feature(out, self.relu(out.features))
out = self.conv2(out)
out = replace_feature(out, self.bn2(out.features))
if self.downsample is not None:
identity = self.downsample(x)
out = replace_feature(out, out.features + identity.features)
out = replace_feature(out, self.relu(out.features))
return out
class VoxelResBackBone8xVoxelNeXt2D(nn.Module):
def __init__(self, model_cfg, input_channels, grid_size, **kwargs):
super().__init__()
self.model_cfg = model_cfg
norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)
self.sparse_shape = grid_size[[1, 0]]
block = post_act_block
spconv_kernel_sizes = model_cfg.get('SPCONV_KERNEL_SIZES', [3, 3, 3, 3])
self.conv1 = spconv.SparseSequential(
SparseBasicBlock(32, 32, norm_fn=norm_fn, indice_key='res1'),
SparseBasicBlock(32, 32, norm_fn=norm_fn, indice_key='res1'),
SparseBasicBlock(32, 32, norm_fn=norm_fn, indice_key='res1'),
)
self.conv2 = spconv.SparseSequential(
# [1600, 1408] <- [800, 704]
block(32, 64, spconv_kernel_sizes[0], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[0]//2), indice_key='spconv2', conv_type='spconv'),
SparseBasicBlock(64, 64, norm_fn=norm_fn, indice_key='res2'),
SparseBasicBlock(64, 64, norm_fn=norm_fn, indice_key='res2'),
SparseBasicBlock(64, 64, norm_fn=norm_fn, indice_key='res2'),
SparseBasicBlock(64, 64, norm_fn=norm_fn, indice_key='res2'),
)
self.conv3 = spconv.SparseSequential(
# [800, 704] <- [400, 352]
block(64, 128, spconv_kernel_sizes[1], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[1]//2), indice_key='spconv3', conv_type='spconv'),
SparseBasicBlock(128, 128, norm_fn=norm_fn, indice_key='res3'),
SparseBasicBlock(128, 128, norm_fn=norm_fn, indice_key='res3'),
SparseBasicBlock(128, 128, norm_fn=norm_fn, indice_key='res3'),
SparseBasicBlock(128, 128, norm_fn=norm_fn, indice_key='res3'),
SparseBasicBlock(128, 128, norm_fn=norm_fn, indice_key='res3'),
SparseBasicBlock(128, 128, norm_fn=norm_fn, indice_key='res3'),
)
self.conv4 = spconv.SparseSequential(
# [400, 352] <- [200, 176]
block(128, 256, spconv_kernel_sizes[2], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[2]//2), indice_key='spconv4', conv_type='spconv'),
SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res4'),
SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res4'),
SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res4'),
)
self.conv5 = spconv.SparseSequential(
# [400, 352] <- [200, 176]
block(256, 256, spconv_kernel_sizes[3], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[3]//2), indice_key='spconv5', conv_type='spconv'),
SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res5'),
SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res5'),
SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res5'),
)
self.conv6 = spconv.SparseSequential(
# [400, 352] <- [200, 176]
block(256, 256, spconv_kernel_sizes[3], norm_fn=norm_fn, stride=2, padding=int(spconv_kernel_sizes[3]//2), indice_key='spconv6', conv_type='spconv'),
SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res6'),
SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res6'),
SparseBasicBlock(256, 256, norm_fn=norm_fn, indice_key='res6'),
)
self.conv_out = spconv.SparseSequential(
# [200, 150, 5] -> [200, 150, 2]
spconv.SparseConv2d(256, 256, 3, stride=1, padding=1, bias=False, indice_key='spconv_down2'),
norm_fn(256),
nn.ReLU(),
)
self.shared_conv = spconv.SparseSequential(
spconv.SubMConv2d(256, 256, 3, stride=1, padding=1, bias=True),
nn.BatchNorm1d(256),
nn.ReLU(True),
)
self.num_point_features = 256
self.backbone_channels = {
'x_conv1': 32,
'x_conv2': 64,
'x_conv3': 128,
'x_conv4': 256,
'x_conv5': 256
}
self.forward_ret_dict = {}
def bev_out(self, x_conv):
features_cat = x_conv.features
indices_cat = x_conv.indices
indices_unique, _inv = torch.unique(indices_cat, dim=0, return_inverse=True)
features_unique = features_cat.new_zeros((indices_unique.shape[0], features_cat.shape[1]))
features_unique.index_add_(0, _inv, features_cat)
x_out = spconv.SparseConvTensor(
features=features_unique,
indices=indices_unique,
spatial_shape=x_conv.spatial_shape,
batch_size=x_conv.batch_size
)
return x_out
def forward(self, batch_dict):
pillar_features, pillar_coords = batch_dict['pillar_features'], batch_dict['pillar_coords']
batch_size = batch_dict['batch_size']
input_sp_tensor = spconv.SparseConvTensor(
features=pillar_features,
indices=pillar_coords.int(),
spatial_shape=self.sparse_shape,
batch_size=batch_size
)
x_conv1 = self.conv1(input_sp_tensor)
x_conv2 = self.conv2(x_conv1)
x_conv3 = self.conv3(x_conv2)
x_conv4 = self.conv4(x_conv3)
x_conv5 = self.conv5(x_conv4)
x_conv6 = self.conv6(x_conv5)
x_conv5.indices[:, 1:] *= 2
x_conv6.indices[:, 1:] *= 4
x_conv4 = x_conv4.replace_feature(torch.cat([x_conv4.features, x_conv5.features, x_conv6.features]))
x_conv4.indices = torch.cat([x_conv4.indices, x_conv5.indices, x_conv6.indices])
out = self.bev_out(x_conv4)
out = self.conv_out(out)
out = self.shared_conv(out)
batch_dict.update({
'encoded_spconv_tensor': out,
'encoded_spconv_tensor_stride': 8
})
batch_dict.update({
'multi_scale_2d_features': {
'x_conv1': x_conv1,
'x_conv2': x_conv2,
'x_conv3': x_conv3,
'x_conv4': x_conv4,
'x_conv5': x_conv5,
}
})
batch_dict.update({
'multi_scale_2d_strides': {
'x_conv1': 1,
'x_conv2': 2,
'x_conv3': 4,
'x_conv4': 8,
'x_conv5': 16,
}
})
return batch_dict