Files
OpenPCDet/pcdet/ops/iou3d_nms/iou3d_nms_utils.py
2025-09-21 20:19:24 +08:00

189 lines
6.2 KiB
Python

"""
3D IoU Calculation and Rotated NMS
Written by Shaoshuai Shi
All Rights Reserved 2019-2020.
"""
import torch
from ...utils import common_utils
from . import iou3d_nms_cuda
def boxes_bev_iou_cpu(boxes_a, boxes_b):
"""
Args:
boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
Returns:
ans_iou: (N, M)
"""
boxes_a, is_numpy = common_utils.check_numpy_to_torch(boxes_a)
boxes_b, is_numpy = common_utils.check_numpy_to_torch(boxes_b)
assert not (boxes_a.is_cuda or boxes_b.is_cuda), 'Only support CPU tensors'
assert boxes_a.shape[1] == 7 and boxes_b.shape[1] == 7
ans_iou = boxes_a.new_zeros(torch.Size((boxes_a.shape[0], boxes_b.shape[0])))
iou3d_nms_cuda.boxes_iou_bev_cpu(boxes_a.contiguous(), boxes_b.contiguous(), ans_iou)
return ans_iou.numpy() if is_numpy else ans_iou
def boxes_iou_bev(boxes_a, boxes_b):
"""
Args:
boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
Returns:
ans_iou: (N, M)
"""
assert boxes_a.shape[1] == boxes_b.shape[1] == 7
ans_iou = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))).zero_()
iou3d_nms_cuda.boxes_iou_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), ans_iou)
return ans_iou
def boxes_iou3d_gpu(boxes_a, boxes_b):
"""
Args:
boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
boxes_b: (M, 7) [x, y, z, dx, dy, dz, heading]
Returns:
ans_iou: (N, M)
"""
assert boxes_a.shape[1] == boxes_b.shape[1] == 7
# height overlap
boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1)
boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1)
boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(1, -1)
boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(1, -1)
# bev overlap
overlaps_bev = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))).zero_() # (N, M)
iou3d_nms_cuda.boxes_overlap_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), overlaps_bev)
max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min)
min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max)
overlaps_h = torch.clamp(min_of_max - max_of_min, min=0)
# 3d iou
overlaps_3d = overlaps_bev * overlaps_h
vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1)
vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(1, -1)
iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6)
return iou3d
def boxes_aligned_iou3d_gpu(boxes_a, boxes_b):
"""
Args:
boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading]
Returns:
ans_iou: (N,)
"""
assert boxes_a.shape[0] == boxes_b.shape[0]
assert boxes_a.shape[1] == boxes_b.shape[1] == 7
# height overlap
boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1)
boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1)
boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(-1, 1)
boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(-1, 1)
# bev overlap
overlaps_bev = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], 1))).zero_() # (N, M)
iou3d_nms_cuda.boxes_aligned_overlap_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), overlaps_bev)
max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min)
min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max)
overlaps_h = torch.clamp(min_of_max - max_of_min, min=0)
# 3d iou
overlaps_3d = overlaps_bev * overlaps_h
vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1)
vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(-1, 1)
iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6)
return iou3d
def nms_gpu(boxes, scores, thresh, pre_maxsize=None, **kwargs):
"""
:param boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
:param scores: (N)
:param thresh:
:return:
"""
assert boxes.shape[1] == 7
order = scores.sort(0, descending=True)[1]
if pre_maxsize is not None:
order = order[:pre_maxsize]
boxes = boxes[order].contiguous()
keep = torch.LongTensor(boxes.size(0))
num_out = iou3d_nms_cuda.nms_gpu(boxes, keep, thresh)
return order[keep[:num_out].cuda()].contiguous(), None
def nms_normal_gpu(boxes, scores, thresh, **kwargs):
"""
:param boxes: (N, 7) [x, y, z, dx, dy, dz, heading]
:param scores: (N)
:param thresh:
:return:
"""
assert boxes.shape[1] == 7
order = scores.sort(0, descending=True)[1]
boxes = boxes[order].contiguous()
keep = torch.LongTensor(boxes.size(0))
num_out = iou3d_nms_cuda.nms_normal_gpu(boxes, keep, thresh)
return order[keep[:num_out].cuda()].contiguous(), None
def paired_boxes_iou3d_gpu(boxes_a, boxes_b):
"""
Args:
boxes_a: (N, 7) [x, y, z, dx, dy, dz, heading]
boxes_b: (N, 7) [x, y, z, dx, dy, dz, heading]
Returns:
ans_iou: (N)
"""
assert boxes_a.shape[0] == boxes_b.shape[0]
assert boxes_a.shape[1] == boxes_b.shape[1] == 7
# height overlap
boxes_a_height_max = (boxes_a[:, 2] + boxes_a[:, 5] / 2).view(-1, 1)
boxes_a_height_min = (boxes_a[:, 2] - boxes_a[:, 5] / 2).view(-1, 1)
boxes_b_height_max = (boxes_b[:, 2] + boxes_b[:, 5] / 2).view(-1, 1)
boxes_b_height_min = (boxes_b[:, 2] - boxes_b[:, 5] / 2).view(-1, 1)
# bev overlap
overlaps_bev = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], 1))).zero_() # (N, ``)
iou3d_nms_cuda.paired_boxes_overlap_bev_gpu(boxes_a.contiguous(), boxes_b.contiguous(), overlaps_bev)
max_of_min = torch.max(boxes_a_height_min, boxes_b_height_min)
min_of_max = torch.min(boxes_a_height_max, boxes_b_height_max)
overlaps_h = torch.clamp(min_of_max - max_of_min, min=0)
# 3d iou
overlaps_3d = overlaps_bev * overlaps_h
vol_a = (boxes_a[:, 3] * boxes_a[:, 4] * boxes_a[:, 5]).view(-1, 1)
vol_b = (boxes_b[:, 3] * boxes_b[:, 4] * boxes_b[:, 5]).view(-1, 1)
iou3d = overlaps_3d / torch.clamp(vol_a + vol_b - overlaps_3d, min=1e-6)
return iou3d.view(-1)