270 lines
10 KiB
Python
270 lines
10 KiB
Python
from functools import partial
|
|
|
|
import torch
|
|
from pcdet.utils.spconv_utils import spconv
|
|
import torch.nn as nn
|
|
|
|
from .focal_sparse_conv.focal_sparse_conv import FocalSparseConv
|
|
from .focal_sparse_conv.SemanticSeg.pyramid_ffn import PyramidFeat2D
|
|
|
|
|
|
class objDict:
|
|
@staticmethod
|
|
def to_object(obj: object, **data):
|
|
obj.__dict__.update(data)
|
|
|
|
class ConfigDict:
|
|
def __init__(self, name):
|
|
self.name = name
|
|
def __getitem__(self, item):
|
|
return getattr(self, item)
|
|
|
|
|
|
class SparseSequentialBatchdict(spconv.SparseSequential):
|
|
def __init__(self, *args, **kwargs):
|
|
super(SparseSequentialBatchdict, self).__init__(*args, **kwargs)
|
|
|
|
def forward(self, input, batch_dict=None):
|
|
loss = 0
|
|
for k, module in self._modules.items():
|
|
if module is None:
|
|
continue
|
|
if isinstance(module, (FocalSparseConv,)):
|
|
input, batch_dict, _loss = module(input, batch_dict)
|
|
loss += _loss
|
|
else:
|
|
input = module(input)
|
|
return input, batch_dict, loss
|
|
|
|
|
|
def post_act_block(in_channels, out_channels, kernel_size, indice_key=None, stride=1, padding=0,
|
|
conv_type='subm', norm_fn=None):
|
|
|
|
if conv_type == 'subm':
|
|
conv = spconv.SubMConv3d(in_channels, out_channels, kernel_size, bias=False, indice_key=indice_key)
|
|
elif conv_type == 'spconv':
|
|
conv = spconv.SparseConv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
|
|
bias=False, indice_key=indice_key)
|
|
elif conv_type == 'inverseconv':
|
|
conv = spconv.SparseInverseConv3d(in_channels, out_channels, kernel_size, indice_key=indice_key, bias=False)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
m = spconv.SparseSequential(
|
|
conv,
|
|
norm_fn(out_channels),
|
|
nn.ReLU(True),
|
|
)
|
|
|
|
return m
|
|
|
|
|
|
class SparseBasicBlock(spconv.SparseModule):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, norm_fn=None, downsample=None, indice_key=None):
|
|
super(SparseBasicBlock, self).__init__()
|
|
|
|
assert norm_fn is not None
|
|
bias = norm_fn is not None
|
|
self.conv1 = spconv.SubMConv3d(
|
|
inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key
|
|
)
|
|
self.bn1 = norm_fn(planes)
|
|
self.relu = nn.ReLU(True)
|
|
self.conv2 = spconv.SubMConv3d(
|
|
planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key
|
|
)
|
|
self.bn2 = norm_fn(planes)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
|
|
out = self.conv1(x)
|
|
out = out.replace_feature(self.bn1(out.features))
|
|
out = out.replace_feature(self.relu(out.features))
|
|
|
|
out = self.conv2(out)
|
|
out = out.replace_feature(self.bn2(out.features))
|
|
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
|
|
out = out.replace_feature(out.features + identity.features)
|
|
out = out.replace_feature(self.relu(out.features))
|
|
|
|
return out
|
|
|
|
|
|
class VoxelBackBone8xFocal(nn.Module):
|
|
def __init__(self, model_cfg, input_channels, grid_size, **kwargs):
|
|
super().__init__()
|
|
self.model_cfg = model_cfg
|
|
|
|
norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)
|
|
|
|
self.sparse_shape = grid_size[::-1] + [1, 0, 0]
|
|
|
|
self.conv_input = spconv.SparseSequential(
|
|
spconv.SubMConv3d(input_channels, 16, 3, padding=1, bias=False, indice_key='subm1'),
|
|
norm_fn(16),
|
|
nn.ReLU(True),
|
|
)
|
|
|
|
block = post_act_block
|
|
|
|
use_img = model_cfg.get('USE_IMG', False)
|
|
topk = model_cfg.get('TOPK', True)
|
|
threshold = model_cfg.get('THRESHOLD', 0.5)
|
|
kernel_size = model_cfg.get('KERNEL_SIZE', 3)
|
|
mask_multi = model_cfg.get('MASK_MULTI', False)
|
|
skip_mask_kernel = model_cfg.get('SKIP_MASK_KERNEL', False)
|
|
skip_mask_kernel_image = model_cfg.get('SKIP_MASK_KERNEL_IMG', False)
|
|
enlarge_voxel_channels = model_cfg.get('ENLARGE_VOXEL_CHANNELS', -1)
|
|
img_pretrain = model_cfg.get('IMG_PRETRAIN', "../checkpoints/deeplabv3_resnet50_coco-cd0a2569.pth")
|
|
|
|
if use_img:
|
|
model_cfg_seg=dict(
|
|
name='SemDeepLabV3',
|
|
backbone='ResNet50',
|
|
num_class=21, # pretrained on COCO
|
|
args={"feat_extract_layer": ["layer1"],
|
|
"pretrained_path": img_pretrain},
|
|
channel_reduce={
|
|
"in_channels": [256],
|
|
"out_channels": [16],
|
|
"kernel_size": [1],
|
|
"stride": [1],
|
|
"bias": [False]
|
|
}
|
|
)
|
|
cfg_dict = ConfigDict('SemDeepLabV3')
|
|
objDict.to_object(cfg_dict, **model_cfg_seg)
|
|
self.semseg = PyramidFeat2D(optimize=True, model_cfg=cfg_dict)
|
|
|
|
self.conv_focal_multimodal = FocalSparseConv(16, 16, image_channel=model_cfg_seg['channel_reduce']['out_channels'][0],
|
|
topk=topk, threshold=threshold, use_img=True, skip_mask_kernel=skip_mask_kernel_image,
|
|
voxel_stride=1, norm_fn=norm_fn, indice_key='spconv_focal_multimodal')
|
|
|
|
special_spconv_fn = partial(FocalSparseConv, mask_multi=mask_multi, enlarge_voxel_channels=enlarge_voxel_channels,
|
|
topk=topk, threshold=threshold, kernel_size=kernel_size, padding=kernel_size//2,
|
|
skip_mask_kernel=skip_mask_kernel)
|
|
self.use_img = use_img
|
|
|
|
self.conv1 = SparseSequentialBatchdict(
|
|
block(16, 16, 3, norm_fn=norm_fn, padding=1, indice_key='subm1'),
|
|
special_spconv_fn(16, 16, voxel_stride=1, norm_fn=norm_fn, indice_key='focal1'),
|
|
)
|
|
|
|
self.conv2 =SparseSequentialBatchdict(
|
|
# [1600, 1408, 41] <- [800, 704, 21]
|
|
block(16, 32, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv2', conv_type='spconv'),
|
|
block(32, 32, 3, norm_fn=norm_fn, padding=1, indice_key='subm2'),
|
|
block(32, 32, 3, norm_fn=norm_fn, padding=1, indice_key='subm2'),
|
|
special_spconv_fn(32, 32, voxel_stride=2, norm_fn=norm_fn, indice_key='focal2'),
|
|
)
|
|
|
|
self.conv3 = SparseSequentialBatchdict(
|
|
# [800, 704, 21] <- [400, 352, 11]
|
|
block(32, 64, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv3', conv_type='spconv'),
|
|
block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm3'),
|
|
block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm3'),
|
|
special_spconv_fn(64, 64, voxel_stride=4, norm_fn=norm_fn, indice_key='focal3'),
|
|
)
|
|
|
|
self.conv4 = SparseSequentialBatchdict(
|
|
# [400, 352, 11] <- [200, 176, 5]
|
|
block(64, 64, 3, norm_fn=norm_fn, stride=2, padding=(0, 1, 1), indice_key='spconv4', conv_type='spconv'),
|
|
block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm4'),
|
|
block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm4'),
|
|
)
|
|
|
|
last_pad = 0
|
|
last_pad = self.model_cfg.get('last_pad', last_pad)
|
|
self.conv_out = spconv.SparseSequential(
|
|
# [200, 150, 5] -> [200, 150, 2]
|
|
spconv.SparseConv3d(64, 128, (3, 1, 1), stride=(2, 1, 1), padding=last_pad,
|
|
bias=False, indice_key='spconv_down2'),
|
|
norm_fn(128),
|
|
nn.ReLU(True),
|
|
)
|
|
self.num_point_features = 128
|
|
self.backbone_channels = {
|
|
'x_conv1': 16,
|
|
'x_conv2': 32,
|
|
'x_conv3': 64,
|
|
'x_conv4': 64
|
|
}
|
|
|
|
self.forward_ret_dict = {}
|
|
|
|
def get_loss(self, tb_dict=None):
|
|
loss = self.forward_ret_dict['loss_box_of_pts']
|
|
if tb_dict is None:
|
|
tb_dict = {}
|
|
tb_dict['loss_box_of_pts'] = loss.item()
|
|
return loss, tb_dict
|
|
|
|
def forward(self, batch_dict):
|
|
"""
|
|
Args:
|
|
batch_dict:
|
|
batch_size: int
|
|
vfe_features: (num_voxels, C)
|
|
voxel_coords: (num_voxels, 4), [batch_idx, z_idx, y_idx, x_idx]
|
|
Returns:
|
|
batch_dict:
|
|
encoded_spconv_tensor: sparse tensor
|
|
"""
|
|
voxel_features, voxel_coords = batch_dict['voxel_features'], batch_dict['voxel_coords']
|
|
batch_size = batch_dict['batch_size']
|
|
input_sp_tensor = spconv.SparseConvTensor(
|
|
features=voxel_features,
|
|
indices=voxel_coords.int(),
|
|
spatial_shape=self.sparse_shape,
|
|
batch_size=batch_size
|
|
)
|
|
|
|
loss_img = 0
|
|
|
|
x = self.conv_input(input_sp_tensor)
|
|
x_conv1, batch_dict, loss1 = self.conv1(x, batch_dict)
|
|
|
|
if self.use_img:
|
|
x_image = self.semseg(batch_dict['images'])['layer1_feat2d']
|
|
x_conv1, batch_dict, loss_img = self.conv_focal_multimodal(x_conv1, batch_dict, x_image)
|
|
|
|
x_conv2, batch_dict, loss2 = self.conv2(x_conv1, batch_dict)
|
|
x_conv3, batch_dict, loss3 = self.conv3(x_conv2, batch_dict)
|
|
x_conv4, batch_dict, loss4 = self.conv4(x_conv3, batch_dict)
|
|
|
|
self.forward_ret_dict['loss_box_of_pts'] = loss1 + loss2 + loss3 + loss4 + loss_img
|
|
# for detection head
|
|
# [200, 176, 5] -> [200, 176, 2]
|
|
out = self.conv_out(x_conv4)
|
|
|
|
batch_dict.update({
|
|
'encoded_spconv_tensor': out,
|
|
'encoded_spconv_tensor_stride': 8
|
|
})
|
|
batch_dict.update({
|
|
'multi_scale_3d_features': {
|
|
'x_conv1': x_conv1,
|
|
'x_conv2': x_conv2,
|
|
'x_conv3': x_conv3,
|
|
'x_conv4': x_conv4,
|
|
}
|
|
})
|
|
batch_dict.update({
|
|
'multi_scale_3d_strides': {
|
|
'x_conv1': 1,
|
|
'x_conv2': 2,
|
|
'x_conv3': 4,
|
|
'x_conv4': 8,
|
|
}
|
|
})
|
|
|
|
return batch_dict
|