Files
OpenPCDet/pcdet/utils/box_coder_utils.py
2025-09-21 20:19:28 +08:00

223 lines
7.4 KiB
Python

import numpy as np
import torch
class ResidualCoder(object):
def __init__(self, code_size=7, encode_angle_by_sincos=False, **kwargs):
super().__init__()
self.code_size = code_size
self.encode_angle_by_sincos = encode_angle_by_sincos
if self.encode_angle_by_sincos:
self.code_size += 1
def encode_torch(self, boxes, anchors):
"""
Args:
boxes: (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
anchors: (N, 7 + C) [x, y, z, dx, dy, dz, heading or *[cos, sin], ...]
Returns:
"""
anchors[:, 3:6] = torch.clamp_min(anchors[:, 3:6], min=1e-5)
boxes[:, 3:6] = torch.clamp_min(boxes[:, 3:6], min=1e-5)
xa, ya, za, dxa, dya, dza, ra, *cas = torch.split(anchors, 1, dim=-1)
xg, yg, zg, dxg, dyg, dzg, rg, *cgs = torch.split(boxes, 1, dim=-1)
diagonal = torch.sqrt(dxa ** 2 + dya ** 2)
xt = (xg - xa) / diagonal
yt = (yg - ya) / diagonal
zt = (zg - za) / dza
dxt = torch.log(dxg / dxa)
dyt = torch.log(dyg / dya)
dzt = torch.log(dzg / dza)
if self.encode_angle_by_sincos:
rt_cos = torch.cos(rg) - torch.cos(ra)
rt_sin = torch.sin(rg) - torch.sin(ra)
rts = [rt_cos, rt_sin]
else:
rts = [rg - ra]
cts = [g - a for g, a in zip(cgs, cas)]
return torch.cat([xt, yt, zt, dxt, dyt, dzt, *rts, *cts], dim=-1)
def decode_torch(self, box_encodings, anchors):
"""
Args:
box_encodings: (B, N, 7 + C) or (N, 7 + C) [x, y, z, dx, dy, dz, heading or *[cos, sin], ...]
anchors: (B, N, 7 + C) or (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
Returns:
"""
xa, ya, za, dxa, dya, dza, ra, *cas = torch.split(anchors, 1, dim=-1)
if not self.encode_angle_by_sincos:
xt, yt, zt, dxt, dyt, dzt, rt, *cts = torch.split(box_encodings, 1, dim=-1)
else:
xt, yt, zt, dxt, dyt, dzt, cost, sint, *cts = torch.split(box_encodings, 1, dim=-1)
diagonal = torch.sqrt(dxa ** 2 + dya ** 2)
xg = xt * diagonal + xa
yg = yt * diagonal + ya
zg = zt * dza + za
dxg = torch.exp(dxt) * dxa
dyg = torch.exp(dyt) * dya
dzg = torch.exp(dzt) * dza
if self.encode_angle_by_sincos:
rg_cos = cost + torch.cos(ra)
rg_sin = sint + torch.sin(ra)
rg = torch.atan2(rg_sin, rg_cos)
else:
rg = rt + ra
cgs = [t + a for t, a in zip(cts, cas)]
return torch.cat([xg, yg, zg, dxg, dyg, dzg, rg, *cgs], dim=-1)
class PreviousResidualDecoder(object):
def __init__(self, code_size=7, **kwargs):
super().__init__()
self.code_size = code_size
@staticmethod
def decode_torch(box_encodings, anchors):
"""
Args:
box_encodings: (B, N, 7 + ?) x, y, z, w, l, h, r, custom values
anchors: (B, N, 7 + C) or (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
Returns:
"""
xa, ya, za, dxa, dya, dza, ra, *cas = torch.split(anchors, 1, dim=-1)
xt, yt, zt, wt, lt, ht, rt, *cts = torch.split(box_encodings, 1, dim=-1)
diagonal = torch.sqrt(dxa ** 2 + dya ** 2)
xg = xt * diagonal + xa
yg = yt * diagonal + ya
zg = zt * dza + za
dxg = torch.exp(lt) * dxa
dyg = torch.exp(wt) * dya
dzg = torch.exp(ht) * dza
rg = rt + ra
cgs = [t + a for t, a in zip(cts, cas)]
return torch.cat([xg, yg, zg, dxg, dyg, dzg, rg, *cgs], dim=-1)
class PreviousResidualRoIDecoder(object):
def __init__(self, code_size=7, **kwargs):
super().__init__()
self.code_size = code_size
@staticmethod
def decode_torch(box_encodings, anchors):
"""
Args:
box_encodings: (B, N, 7 + ?) x, y, z, w, l, h, r, custom values
anchors: (B, N, 7 + C) or (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
Returns:
"""
xa, ya, za, dxa, dya, dza, ra, *cas = torch.split(anchors, 1, dim=-1)
xt, yt, zt, wt, lt, ht, rt, *cts = torch.split(box_encodings, 1, dim=-1)
diagonal = torch.sqrt(dxa ** 2 + dya ** 2)
xg = xt * diagonal + xa
yg = yt * diagonal + ya
zg = zt * dza + za
dxg = torch.exp(lt) * dxa
dyg = torch.exp(wt) * dya
dzg = torch.exp(ht) * dza
rg = ra - rt
cgs = [t + a for t, a in zip(cts, cas)]
return torch.cat([xg, yg, zg, dxg, dyg, dzg, rg, *cgs], dim=-1)
class PointResidualCoder(object):
def __init__(self, code_size=8, use_mean_size=True, **kwargs):
super().__init__()
self.code_size = code_size
self.use_mean_size = use_mean_size
if self.use_mean_size:
self.mean_size = torch.from_numpy(np.array(kwargs['mean_size'])).cuda().float()
assert self.mean_size.min() > 0
def encode_torch(self, gt_boxes, points, gt_classes=None):
"""
Args:
gt_boxes: (N, 7 + C) [x, y, z, dx, dy, dz, heading, ...]
points: (N, 3) [x, y, z]
gt_classes: (N) [1, num_classes]
Returns:
box_coding: (N, 8 + C)
"""
gt_boxes[:, 3:6] = torch.clamp_min(gt_boxes[:, 3:6], min=1e-5)
xg, yg, zg, dxg, dyg, dzg, rg, *cgs = torch.split(gt_boxes, 1, dim=-1)
xa, ya, za = torch.split(points, 1, dim=-1)
if self.use_mean_size:
assert gt_classes.max() <= self.mean_size.shape[0]
point_anchor_size = self.mean_size[gt_classes - 1]
dxa, dya, dza = torch.split(point_anchor_size, 1, dim=-1)
diagonal = torch.sqrt(dxa ** 2 + dya ** 2)
xt = (xg - xa) / diagonal
yt = (yg - ya) / diagonal
zt = (zg - za) / dza
dxt = torch.log(dxg / dxa)
dyt = torch.log(dyg / dya)
dzt = torch.log(dzg / dza)
else:
xt = (xg - xa)
yt = (yg - ya)
zt = (zg - za)
dxt = torch.log(dxg)
dyt = torch.log(dyg)
dzt = torch.log(dzg)
cts = [g for g in cgs]
return torch.cat([xt, yt, zt, dxt, dyt, dzt, torch.cos(rg), torch.sin(rg), *cts], dim=-1)
def decode_torch(self, box_encodings, points, pred_classes=None):
"""
Args:
box_encodings: (N, 8 + C) [x, y, z, dx, dy, dz, cos, sin, ...]
points: [x, y, z]
pred_classes: (N) [1, num_classes]
Returns:
"""
xt, yt, zt, dxt, dyt, dzt, cost, sint, *cts = torch.split(box_encodings, 1, dim=-1)
xa, ya, za = torch.split(points, 1, dim=-1)
if self.use_mean_size:
assert pred_classes.max() <= self.mean_size.shape[0]
point_anchor_size = self.mean_size[pred_classes - 1]
dxa, dya, dza = torch.split(point_anchor_size, 1, dim=-1)
diagonal = torch.sqrt(dxa ** 2 + dya ** 2)
xg = xt * diagonal + xa
yg = yt * diagonal + ya
zg = zt * dza + za
dxg = torch.exp(dxt) * dxa
dyg = torch.exp(dyt) * dya
dzg = torch.exp(dzt) * dza
else:
xg = xt + xa
yg = yt + ya
zg = zt + za
dxg, dyg, dzg = torch.split(torch.exp(box_encodings[..., 3:6]), 1, dim=-1)
rg = torch.atan2(sint, cost)
cgs = [t for t in cts]
return torch.cat([xg, yg, zg, dxg, dyg, dzg, rg, *cgs], dim=-1)