96 lines
3.0 KiB
Markdown
96 lines
3.0 KiB
Markdown
# Large Language Models (LLMs)
|
||
|
||
|
||
Agents-Flex provides an abstract implementation interface for Large Language Models (LLMs) called `Llm.java`,
|
||
supporting two different chat types: `chat` and `chatStream`.
|
||
|
||
For various vendors, Agents-Flex offers different implementation classes and communication protocols, including `HTTP`, `SSE`, and `WebSocket` clients.
|
||
|
||
## Chat
|
||
|
||
In chat conversations of AI LLMs, we need to consider several different scenarios:
|
||
|
||
- Simple chat
|
||
- Chat with Histories
|
||
- Function Calling
|
||
|
||
These capabilities are determined by prompts, so Agents-Flex provides three implementations of prompts:
|
||
|
||
- SimplePrompt: Used for simple chat
|
||
- HistoriesPrompt: Used for chat with Histories
|
||
- FunctionPrompt: Used for Function Calling
|
||
|
||
During the interaction between prompts and LLMs, messages are exchanged. Therefore, Agents-Flex also provides different message implementations:
|
||
|
||
- **AiMessage**: The message returned by the LLMs, which includes not only the message content but also data such as token consumption.
|
||
- **FunctionMessage**: A subclass of AiMessage, returned when using FunctionPrompt in the `chat` method.
|
||
- **HumanMessage**: Represents messages input by Human during conversations.
|
||
- **SystemMessage**: Represents system messages, often used to inform the LLM's role, for fine-tuning prompts.
|
||
|
||
### Example Code
|
||
|
||
**Simple Chat**
|
||
|
||
```java
|
||
public static void main(String[] args) {
|
||
Llm llm = new OpenAILlm.of("sk-rts5NF6n*******");
|
||
|
||
Prompt prompt = new SimplePrompt("what is your name?");
|
||
String response = llm.chat(prompt);
|
||
|
||
System.out.println(response);
|
||
}
|
||
```
|
||
|
||
**Chat with Histories**
|
||
|
||
```java
|
||
public static void main(String[] args) {
|
||
Llm llm = new OpenAILlm.of("sk-rts5NF6n*******");
|
||
|
||
HistoriesPrompt prompt = new HistoriesPrompt();
|
||
prompt.addMessage(new SystemMessage("You are now a database development engineer...."));
|
||
prompt.addMessage(new HumanMessage("Please provide the DDL content for...."));
|
||
|
||
String response = llm.chat(prompt);
|
||
|
||
System.out.println(response);
|
||
}
|
||
```
|
||
|
||
**Function Calling**
|
||
|
||
Utility class definition:
|
||
|
||
```java
|
||
public class WeatherUtil {
|
||
|
||
@FunctionDef(name = "get_the_weather_info", description = "get the weather info")
|
||
public static String getWeatherInfo(
|
||
@FunctionParam(name = "city", description = "the city name") String name) {
|
||
//Here, we should call API through third-party interfaces.
|
||
return name + "The weather is cloudy turning to overcast. ";
|
||
}
|
||
}
|
||
```
|
||
|
||
Create FunctionPrompt and pass it to the LLMs through the `chat` method:
|
||
|
||
```java
|
||
public static void main(String[] args) {
|
||
OpenAILlmConfig config = new OpenAILlmConfig();
|
||
config.setApiKey("sk-rts5NF6n*******");
|
||
|
||
OpenAILlm llm = new OpenAILlm(config);
|
||
|
||
FunctionPrompt prompt = new FunctionPrompt("how's the weather in New York?", WeatherUtil.class);
|
||
FunctionResultResponse response = llm.chat(prompt);
|
||
|
||
//Execute utility class method to obtain result.
|
||
Object result = response.getFunctionResult();
|
||
|
||
System.out.println(result);
|
||
//"The weather in New York is cloudy turning overcast."
|
||
}
|
||
```
|