This commit is contained in:
2025-09-21 20:19:09 +08:00
parent fcca4221c0
commit 3849ebad39

View File

@@ -0,0 +1,131 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import voxel_query_utils
from typing import List
class NeighborVoxelSAModuleMSG(nn.Module):
def __init__(self, *, query_ranges: List[List[int]], radii: List[float],
nsamples: List[int], mlps: List[List[int]], use_xyz: bool = True, pool_method='max_pool'):
"""
Args:
query_ranges: list of int, list of neighbor ranges to group with
nsamples: list of int, number of samples in each ball query
mlps: list of list of int, spec of the pointnet before the global pooling for each scale
use_xyz:
pool_method: max_pool / avg_pool
"""
super().__init__()
assert len(query_ranges) == len(nsamples) == len(mlps)
self.groupers = nn.ModuleList()
self.mlps_in = nn.ModuleList()
self.mlps_pos = nn.ModuleList()
self.mlps_out = nn.ModuleList()
for i in range(len(query_ranges)):
max_range = query_ranges[i]
nsample = nsamples[i]
radius = radii[i]
self.groupers.append(voxel_query_utils.VoxelQueryAndGrouping(max_range, radius, nsample))
mlp_spec = mlps[i]
cur_mlp_in = nn.Sequential(
nn.Conv1d(mlp_spec[0], mlp_spec[1], kernel_size=1, bias=False),
nn.BatchNorm1d(mlp_spec[1])
)
cur_mlp_pos = nn.Sequential(
nn.Conv2d(3, mlp_spec[1], kernel_size=1, bias=False),
nn.BatchNorm2d(mlp_spec[1])
)
cur_mlp_out = nn.Sequential(
nn.Conv1d(mlp_spec[1], mlp_spec[2], kernel_size=1, bias=False),
nn.BatchNorm1d(mlp_spec[2]),
nn.ReLU()
)
self.mlps_in.append(cur_mlp_in)
self.mlps_pos.append(cur_mlp_pos)
self.mlps_out.append(cur_mlp_out)
self.relu = nn.ReLU()
self.pool_method = pool_method
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 0)
def forward(self, xyz, xyz_batch_cnt, new_xyz, new_xyz_batch_cnt, \
new_coords, features, voxel2point_indices):
"""
:param xyz: (N1 + N2 ..., 3) tensor of the xyz coordinates of the features
:param xyz_batch_cnt: (batch_size), [N1, N2, ...]
:param new_xyz: (M1 + M2 ..., 3)
:param new_xyz_batch_cnt: (batch_size), [M1, M2, ...]
:param features: (N1 + N2 ..., C) tensor of the descriptors of the the features
:param point_indices: (B, Z, Y, X) tensor of point indices
:return:
new_xyz: (M1 + M2 ..., 3) tensor of the new features' xyz
new_features: (M1 + M2 ..., \sum_k(mlps[k][-1])) tensor of the new_features descriptors
"""
# change the order to [batch_idx, z, y, x]
new_coords = new_coords[:, [0, 3, 2, 1]].contiguous()
new_features_list = []
for k in range(len(self.groupers)):
# features_in: (1, C, M1+M2)
features_in = features.permute(1, 0).unsqueeze(0)
features_in = self.mlps_in[k](features_in)
# features_in: (1, M1+M2, C)
features_in = features_in.permute(0, 2, 1).contiguous()
# features_in: (M1+M2, C)
features_in = features_in.view(-1, features_in.shape[-1])
# grouped_features: (M1+M2, C, nsample)
# grouped_xyz: (M1+M2, 3, nsample)
grouped_features, grouped_xyz, empty_ball_mask = self.groupers[k](
new_coords, xyz, xyz_batch_cnt, new_xyz, new_xyz_batch_cnt, features_in, voxel2point_indices
)
grouped_features[empty_ball_mask] = 0
# grouped_features: (1, C, M1+M2, nsample)
grouped_features = grouped_features.permute(1, 0, 2).unsqueeze(dim=0)
# grouped_xyz: (M1+M2, 3, nsample)
grouped_xyz = grouped_xyz - new_xyz.unsqueeze(-1)
grouped_xyz[empty_ball_mask] = 0
# grouped_xyz: (1, 3, M1+M2, nsample)
grouped_xyz = grouped_xyz.permute(1, 0, 2).unsqueeze(0)
# grouped_xyz: (1, C, M1+M2, nsample)
position_features = self.mlps_pos[k](grouped_xyz)
new_features = grouped_features + position_features
new_features = self.relu(new_features)
if self.pool_method == 'max_pool':
new_features = F.max_pool2d(
new_features, kernel_size=[1, new_features.size(3)]
).squeeze(dim=-1) # (1, C, M1 + M2 ...)
elif self.pool_method == 'avg_pool':
new_features = F.avg_pool2d(
new_features, kernel_size=[1, new_features.size(3)]
).squeeze(dim=-1) # (1, C, M1 + M2 ...)
else:
raise NotImplementedError
new_features = self.mlps_out[k](new_features)
new_features = new_features.squeeze(dim=0).permute(1, 0) # (M1 + M2 ..., C)
new_features_list.append(new_features)
# (M1 + M2 ..., C)
new_features = torch.cat(new_features_list, dim=1)
return new_features