Add File
This commit is contained in:
182
pcdet/utils/commu_utils.py
Normal file
182
pcdet/utils/commu_utils.py
Normal file
@@ -0,0 +1,182 @@
|
||||
"""
|
||||
This file contains primitives for multi-gpu communication.
|
||||
This is useful when doing distributed training.
|
||||
|
||||
deeply borrow from maskrcnn-benchmark and ST3D
|
||||
"""
|
||||
|
||||
import pickle
|
||||
import time
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
|
||||
def get_world_size():
|
||||
if not dist.is_available():
|
||||
return 1
|
||||
if not dist.is_initialized():
|
||||
return 1
|
||||
return dist.get_world_size()
|
||||
|
||||
|
||||
def get_rank():
|
||||
if not dist.is_available():
|
||||
return 0
|
||||
if not dist.is_initialized():
|
||||
return 0
|
||||
return dist.get_rank()
|
||||
|
||||
|
||||
def is_main_process():
|
||||
return get_rank() == 0
|
||||
|
||||
|
||||
def synchronize():
|
||||
"""
|
||||
Helper function to synchronize (barrier) among all processes when
|
||||
using distributed training
|
||||
"""
|
||||
if not dist.is_available():
|
||||
return
|
||||
if not dist.is_initialized():
|
||||
return
|
||||
world_size = dist.get_world_size()
|
||||
if world_size == 1:
|
||||
return
|
||||
dist.barrier()
|
||||
|
||||
|
||||
def all_gather(data):
|
||||
"""
|
||||
Run all_gather on arbitrary picklable data (not necessarily tensors)
|
||||
Args:
|
||||
data: any picklable object
|
||||
Returns:
|
||||
list[data]: list of data gathered from each rank
|
||||
"""
|
||||
world_size = get_world_size()
|
||||
if world_size == 1:
|
||||
return [data]
|
||||
|
||||
# serialized to a Tensor
|
||||
origin_size = None
|
||||
if not isinstance(data, torch.Tensor):
|
||||
buffer = pickle.dumps(data)
|
||||
storage = torch.ByteStorage.from_buffer(buffer)
|
||||
tensor = torch.ByteTensor(storage).to("cuda")
|
||||
else:
|
||||
origin_size = data.size()
|
||||
tensor = data.reshape(-1)
|
||||
|
||||
tensor_type = tensor.dtype
|
||||
|
||||
# obtain Tensor size of each rank
|
||||
local_size = torch.LongTensor([tensor.numel()]).to("cuda")
|
||||
size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)]
|
||||
dist.all_gather(size_list, local_size)
|
||||
size_list = [int(size.item()) for size in size_list]
|
||||
max_size = max(size_list)
|
||||
|
||||
# receiving Tensor from all ranks
|
||||
# we pad the tensor because torch all_gather does not support
|
||||
# gathering tensors of different shapes
|
||||
tensor_list = []
|
||||
for _ in size_list:
|
||||
tensor_list.append(torch.FloatTensor(size=(max_size,)).cuda().to(tensor_type))
|
||||
if local_size != max_size:
|
||||
padding = torch.FloatTensor(size=(max_size - local_size,)).cuda().to(tensor_type)
|
||||
tensor = torch.cat((tensor, padding), dim=0)
|
||||
dist.all_gather(tensor_list, tensor)
|
||||
|
||||
data_list = []
|
||||
for size, tensor in zip(size_list, tensor_list):
|
||||
if origin_size is None:
|
||||
buffer = tensor.cpu().numpy().tobytes()[:size]
|
||||
data_list.append(pickle.loads(buffer))
|
||||
else:
|
||||
buffer = tensor[:size]
|
||||
data_list.append(buffer)
|
||||
|
||||
if origin_size is not None:
|
||||
new_shape = [-1] + list(origin_size[1:])
|
||||
resized_list = []
|
||||
for data in data_list:
|
||||
# suppose the difference of tensor size exist in first dimension
|
||||
data = data.reshape(new_shape)
|
||||
resized_list.append(data)
|
||||
|
||||
return resized_list
|
||||
else:
|
||||
return data_list
|
||||
|
||||
|
||||
def reduce_dict(input_dict, average=True):
|
||||
"""
|
||||
Args:
|
||||
input_dict (dict): all the values will be reduced
|
||||
average (bool): whether to do average or sum
|
||||
Reduce the values in the dictionary from all processes so that process with rank
|
||||
0 has the averaged results. Returns a dict with the same fields as
|
||||
input_dict, after reduction.
|
||||
"""
|
||||
world_size = get_world_size()
|
||||
if world_size < 2:
|
||||
return input_dict
|
||||
with torch.no_grad():
|
||||
names = []
|
||||
values = []
|
||||
# sort the keys so that they are consistent across processes
|
||||
for k in sorted(input_dict.keys()):
|
||||
names.append(k)
|
||||
values.append(input_dict[k])
|
||||
values = torch.stack(values, dim=0)
|
||||
dist.reduce(values, dst=0)
|
||||
if dist.get_rank() == 0 and average:
|
||||
# only main process gets accumulated, so only divide by
|
||||
# world_size in this case
|
||||
values /= world_size
|
||||
reduced_dict = {k: v for k, v in zip(names, values)}
|
||||
return reduced_dict
|
||||
|
||||
|
||||
def average_reduce_value(data):
|
||||
data_list = all_gather(data)
|
||||
return sum(data_list) / len(data_list)
|
||||
|
||||
|
||||
def all_reduce(data, op="sum", average=False):
|
||||
|
||||
def op_map(op):
|
||||
op_dict = {
|
||||
"SUM": dist.ReduceOp.SUM,
|
||||
"MAX": dist.ReduceOp.MAX,
|
||||
"MIN": dist.ReduceOp.MIN,
|
||||
"PRODUCT": dist.ReduceOp.PRODUCT,
|
||||
}
|
||||
return op_dict[op]
|
||||
|
||||
world_size = get_world_size()
|
||||
if world_size > 1:
|
||||
reduced_data = data.clone()
|
||||
dist.all_reduce(reduced_data, op=op_map(op.upper()))
|
||||
if average:
|
||||
assert op.upper() == 'SUM'
|
||||
return reduced_data / world_size
|
||||
else:
|
||||
return reduced_data
|
||||
return data
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def concat_all_gather(tensor):
|
||||
"""
|
||||
Performs all_gather operation on the provided tensors.
|
||||
*** Warning ***: torch.distributed.all_gather has no gradient.
|
||||
"""
|
||||
tensors_gather = [torch.ones_like(tensor)
|
||||
for _ in range(torch.distributed.get_world_size())]
|
||||
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
|
||||
|
||||
output = torch.cat(tensors_gather, dim=0)
|
||||
return output
|
||||
Reference in New Issue
Block a user