Files
OpenPCDet/docs/CUSTOM_DATASET_TUTORIAL.md
2025-09-21 20:19:31 +08:00

109 lines
3.3 KiB
Markdown

# Custom Dataset Tutorial
For the custom dataset template, we only consider the basic scenario: raw point clouds and
their corresponding annotations. Point clouds are supposed to be stored in `.npy` format.
## Label format
We only consider the most basic information -- category and bounding box in the label template.
Annotations are stored in the `.txt`. Each line represents a box in a given scene as below:
```
# format: [x y z dx dy dz heading_angle category_name]
1.50 1.46 0.10 5.12 1.85 4.13 1.56 Vehicle
5.54 0.57 0.41 1.08 0.74 1.95 1.57 Pedestrian
```
The box should in the unified 3D box definition (see [README](../README.md))
## Files structure
Files should be placed as the following folder structure:
```
OpenPCDet
├── data
│ ├── custom
│ │ │── ImageSets
│ │ │ │── train.txt
│ │ │ │── val.txt
│ │ │── points
│ │ │ │── 000000.npy
│ │ │ │── 999999.npy
│ │ │── labels
│ │ │ │── 000000.txt
│ │ │ │── 999999.txt
├── pcdet
├── tools
```
Dataset splits need to be pre-defined and placed in `ImageSets`
## Hyper-parameters Configurations
### Point cloud features
Modify following configurations in `custom_dataset.yaml` to
suit your own point clouds.
```yaml
POINT_FEATURE_ENCODING: {
encoding_type: absolute_coordinates_encoding,
used_feature_list: ['x', 'y', 'z', 'intensity'],
src_feature_list: ['x', 'y', 'z', 'intensity'],
}
...
# In gt_sampling data augmentation
NUM_POINT_FEATURES: 4
```
#### Point cloud range and voxel sizes
For voxel based detectors such as SECOND, PV-RCNN and CenterPoint, the point cloud range and voxel size should follow:
1. Point cloud range along z-axis / voxel_size is 40
2. Point cloud range along x&y-axis / voxel_size is the multiple of 16.
Notice that the second rule also suit pillar based detectors such as PointPillar and CenterPoint-Pillar.
### Category names and anchor sizes
Category names and anchor size are need to be adapted to custom datasets.
```yaml
CLASS_NAMES: ['Vehicle', 'Pedestrian', 'Cyclist']
...
MAP_CLASS_TO_KITTI: {
'Vehicle': 'Car',
'Pedestrian': 'Pedestrian',
'Cyclist': 'Cyclist',
}
...
'anchor_sizes': [[3.9, 1.6, 1.56]],
...
# In gt sampling data augmentation
PREPARE: {
filter_by_min_points: ['Vehicle:5', 'Pedestrian:5', 'Cyclist:5'],
filter_by_difficulty: [-1],
}
SAMPLE_GROUPS: ['Vehicle:20','Pedestrian:15', 'Cyclist:15']
...
```
In addition, please also modify the default category names for creating infos in `custom_dataset.py`
```
create_custom_infos(
dataset_cfg=dataset_cfg,
class_names=['Vehicle', 'Pedestrian', 'Cyclist'],
data_path=ROOT_DIR / 'data' / 'custom',
save_path=ROOT_DIR / 'data' / 'custom',
)
```
## Create data info
Generate the data infos by running the following command:
```shell
python -m pcdet.datasets.custom.custom_dataset create_custom_infos tools/cfgs/dataset_configs/custom_dataset.yaml
```
## Evaluation
Here, we only provide an implementation for KITTI stype evaluation.
The category mapping between custom dataset and KITTI need to be defined
in the `custom_dataset.yaml`
```yaml
MAP_CLASS_TO_KITTI: {
'Vehicle': 'Car',
'Pedestrian': 'Pedestrian',
'Cyclist': 'Cyclist',
}
```